mobilenet.py 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr

__all__ = ['MobileNet']

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [10, 16, 30],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class MobileNet():
    def __init__(self):
        self.params = train_parameters

    def net(self, input, class_dim=1000, scale=1.0):
        # conv1: 112x112
        input = self.conv_bn_layer(
            input,
            filter_size=3,
            channels=3,
            num_filters=int(32 * scale),
            stride=2,
            padding=1,
            name="conv1")

        # 56x56
        input = self.depthwise_separable(
            input,
            num_filters1=32,
            num_filters2=64,
            num_groups=32,
            stride=1,
            scale=scale,
            name="conv2_1")

        input = self.depthwise_separable(
            input,
            num_filters1=64,
            num_filters2=128,
            num_groups=64,
            stride=2,
            scale=scale,
            name="conv2_2")

        # 28x28
        input = self.depthwise_separable(
            input,
            num_filters1=128,
            num_filters2=128,
            num_groups=128,
            stride=1,
            scale=scale,
            name="conv3_1")

        input = self.depthwise_separable(
            input,
            num_filters1=128,
            num_filters2=256,
            num_groups=128,
            stride=2,
            scale=scale,
            name="conv3_2")

        # 14x14
        input = self.depthwise_separable(
            input,
            num_filters1=256,
            num_filters2=256,
            num_groups=256,
            stride=1,
            scale=scale,
            name="conv4_1")

        input = self.depthwise_separable(
            input,
            num_filters1=256,
            num_filters2=512,
            num_groups=256,
            stride=2,
            scale=scale,
            name="conv4_2")

        # 14x14
        for i in range(5):
            input = self.depthwise_separable(
                input,
                num_filters1=512,
                num_filters2=512,
                num_groups=512,
                stride=1,
                scale=scale,
                name="conv5" + "_" + str(i + 1))
        # 7x7
        input = self.depthwise_separable(
            input,
            num_filters1=512,
            num_filters2=1024,
            num_groups=512,
            stride=2,
            scale=scale,
            name="conv5_6")

        input = self.depthwise_separable(
            input,
            num_filters1=1024,
            num_filters2=1024,
            num_groups=1024,
            stride=1,
            scale=scale,
            name="conv6")

        input = fluid.layers.pool2d(
            input=input,
            pool_size=0,
            pool_stride=1,
            pool_type='avg',
            global_pooling=True)
130 131 132 133 134 135 136 137
        with fluid.name_scope('last_fc'):
            output = fluid.layers.fc(input=input,
                                     size=class_dim,
                                     act='softmax',
                                     param_attr=ParamAttr(
                                         initializer=MSRA(),
                                         name="fc7_weights"),
                                     bias_attr=ParamAttr(name="fc7_offset"))
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

        return output

    def conv_bn_layer(self,
                      input,
                      filter_size,
                      num_filters,
                      stride,
                      padding,
                      channels=None,
                      num_groups=1,
                      act='relu',
                      use_cudnn=True,
                      name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=ParamAttr(
                initializer=MSRA(), name=name + "_weights"),
            bias_attr=False)
        bn_name = name + "_bn"
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(name=bn_name + "_offset"),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def depthwise_separable(self,
                            input,
                            num_filters1,
                            num_filters2,
                            num_groups,
                            stride,
                            scale,
                            name=None):
        depthwise_conv = self.conv_bn_layer(
            input=input,
            filter_size=3,
            num_filters=int(num_filters1 * scale),
            stride=stride,
            padding=1,
            num_groups=int(num_groups * scale),
            use_cudnn=False,
            name=name + "_dw")

        pointwise_conv = self.conv_bn_layer(
            input=depthwise_conv,
            filter_size=1,
            num_filters=int(num_filters2 * scale),
            stride=1,
            padding=0,
            name=name + "_sep")
        return pointwise_conv