train_imagenet.py 9.5 KB
Newer Older
B
Bai Yifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import ast
import argparse
import functools

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)

import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from model import NetworkImageNet as Network
from paddleslim.common import AvgrageMeter
import genotypes
import reader
sys.path[0] = os.path.join(os.path.dirname("__file__"), os.path.pardir)
from utility import add_arguments, print_arguments

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)

# yapf: disable
add_arg('use_multiprocess',  bool,  True,            "Whether use multiprocess reader.")
add_arg('num_workers',       int,   4,               "The multiprocess reader number.")
add_arg('data_dir',          str,   'dataset/ILSVRC2012',"The dir of dataset.")
add_arg('batch_size',        int,   128,             "Minibatch size.")
add_arg('learning_rate',     float, 0.1,             "The start learning rate.")
add_arg('decay_rate',        float, 0.97,            "The lr decay rate.")
add_arg('momentum',          float, 0.9,             "Momentum.")
add_arg('weight_decay',      float, 3e-5,            "Weight_decay.")
add_arg('use_gpu',           bool,  True,            "Whether use GPU.")
add_arg('epochs',            int,   250,             "Epoch number.")
add_arg('init_channels',     int,   48,              "Init channel number.")
add_arg('layers',            int,   14,              "Total number of layers.")
add_arg('class_num',         int,   1000,            "Class number of dataset.")
add_arg('trainset_num',      int,   1281167,         "Images number of trainset.")
add_arg('model_save_dir',    str,   'eval_imagenet', "The path to save model.")
add_arg('auxiliary',         bool,  True,            'Use auxiliary tower.')
add_arg('auxiliary_weight',  float, 0.4,             "Weight for auxiliary loss.")
add_arg('drop_path_prob',    float, 0.0,             "Drop path probability.")
add_arg('dropout',           float, 0.0,             "Dropout probability.")
add_arg('grad_clip',         float, 5,               "Gradient clipping.")
add_arg('label_smooth',      float, 0.1,             "Label smoothing.")
add_arg('arch',              str,   'DARTS_V2',      "Which architecture to use")
add_arg('report_freq',       int,   100,             'Report frequency')
add_arg('use_data_parallel', ast.literal_eval,  False, "The flag indicating whether to use data parallel mode to train the model.")
# yapf: enable


def cross_entropy_label_smooth(preds, targets, epsilon):
    preds = fluid.layers.softmax(preds)
    targets_one_hot = fluid.layers.one_hot(input=targets, depth=args.class_num)
    targets_smooth = fluid.layers.label_smooth(
        targets_one_hot, epsilon=epsilon, dtype="float32")
    loss = fluid.layers.cross_entropy(
        input=preds, label=targets_smooth, soft_label=True)
    return loss


def train(model, train_reader, optimizer, epoch, args):
    objs = AvgrageMeter()
    top1 = AvgrageMeter()
    top5 = AvgrageMeter()
    model.train()

    for step_id, data in enumerate(train_reader()):
        image_np, label_np = data
        image = to_variable(image_np)
        label = to_variable(label_np)
        label.stop_gradient = True
        logits, logits_aux = model(image, True)

        prec1 = fluid.layers.accuracy(input=logits, label=label, k=1)
        prec5 = fluid.layers.accuracy(input=logits, label=label, k=5)
        loss = fluid.layers.reduce_mean(
            cross_entropy_label_smooth(logits, label, args.label_smooth))

        if args.auxiliary:
            loss_aux = fluid.layers.reduce_mean(
                cross_entropy_label_smooth(logits_aux, label,
                                           args.label_smooth))
            loss = loss + args.auxiliary_weight * loss_aux

        if args.use_data_parallel:
            loss = model.scale_loss(loss)
            loss.backward()
            model.apply_collective_grads()
        else:
            loss.backward()

        grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(
            args.grad_clip)
        optimizer.minimize(loss, grad_clip=grad_clip)
        model.clear_gradients()

        n = image.shape[0]
        objs.update(loss.numpy(), n)
        top1.update(prec1.numpy(), n)
        top5.update(prec5.numpy(), n)

        if step_id % args.report_freq == 0:
            logger.info(
                "Train Epoch {}, Step {}, loss {:.6f}, acc_1 {:.6f}, acc_5 {:.6f}".
                format(epoch, step_id, objs.avg[0], top1.avg[0], top5.avg[0]))
    return top1.avg[0], top5.avg[0]


def valid(model, valid_reader, epoch, args):
    objs = AvgrageMeter()
    top1 = AvgrageMeter()
    top5 = AvgrageMeter()
    model.eval()

    for step_id, data in enumerate(valid_reader()):
        image_np, label_np = data
        image = to_variable(image_np)
        label = to_variable(label_np)
        logits, _ = model(image, False)
        prec1 = fluid.layers.accuracy(input=logits, label=label, k=1)
        prec5 = fluid.layers.accuracy(input=logits, label=label, k=5)
        loss = fluid.layers.reduce_mean(
            cross_entropy_label_smooth(logits, label, args.label_smooth))

        n = image.shape[0]
        objs.update(loss.numpy(), n)
        top1.update(prec1.numpy(), n)
        top5.update(prec5.numpy(), n)
        if step_id % args.report_freq == 0:
            logger.info(
                "Valid Epoch {}, Step {}, loss {:.6f}, acc_1 {:.6f}, acc_5 {:.6f}".
                format(epoch, step_id, objs.avg[0], top1.avg[0], top5.avg[0]))
    return top1.avg[0], top5.avg[0]


def main(args):
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)

    with fluid.dygraph.guard(place):
        if args.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context()

        genotype = eval("genotypes.%s" % args.arch)
        model = Network(
            C=args.init_channels,
            num_classes=args.class_num,
            layers=args.layers,
            auxiliary=args.auxiliary,
            genotype=genotype)

        step_per_epoch = int(args.trainset_num / args.batch_size)
        learning_rate = fluid.dygraph.ExponentialDecay(
            args.learning_rate,
            step_per_epoch,
            args.decay_rate,
            staircase=True)
        optimizer = fluid.optimizer.MomentumOptimizer(
            learning_rate,
            momentum=args.momentum,
            regularization=fluid.regularizer.L2Decay(args.weight_decay),
            parameter_list=model.parameters())

        if args.use_data_parallel:
            model = fluid.dygraph.parallel.DataParallel(model, strategy)

        train_loader = fluid.io.DataLoader.from_generator(
            capacity=64,
            use_double_buffer=True,
            iterable=True,
            return_list=True)
        valid_loader = fluid.io.DataLoader.from_generator(
            capacity=64,
            use_double_buffer=True,
            iterable=True,
            return_list=True)

        train_reader = fluid.io.batch(
            reader.imagenet_reader(args.data_dir, 'train'),
            batch_size=args.batch_size,
            drop_last=True)
        valid_reader = fluid.io.batch(
            reader.imagenet_reader(args.data_dir, 'val'),
            batch_size=args.batch_size)

        train_loader.set_sample_list_generator(train_reader, places=place)
        valid_loader.set_sample_list_generator(valid_reader, places=place)

        if args.use_data_parallel:
            train_reader = fluid.contrib.reader.distributed_batch_reader(
                train_reader)

        save_parameters = (not args.use_data_parallel) or (
            args.use_data_parallel and
            fluid.dygraph.parallel.Env().local_rank == 0)
        best_top1 = 0
        for epoch in range(args.epochs):
            logging.info('Epoch {}, lr {:.6f}'.format(
                epoch, optimizer.current_step_lr()))
            train_top1, train_top5 = train(model, train_loader, optimizer,
                                           epoch, args)
            logger.info("Epoch {}, train_top1 {:.6f}, train_top5 {:.6f}".
                        format(epoch, train_top1, train_top5))
            valid_top1, valid_top5 = valid(model, valid_loader, epoch, args)
            if valid_top1 > best_top1:
                best_top1 = valid_top1
                if save_parameters:
                    fluid.save_dygraph(model.state_dict(),
                                       args.model_save_dir + "/best_model")
            logger.info(
                "Epoch {}, valid_top1 {:.6f}, valid_top5 {:.6f}, best_valid_top1 {:6f}".
                format(epoch, valid_top1, valid_top5, best_top1))


if __name__ == '__main__':
    args = parser.parse_args()
    print_arguments(args)

    main(args)