block_sa_nas_mobilenetv2.py 9.1 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
import sys
sys.path.append('..')
import numpy as np
import argparse
import ast
import logging
import time
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddleslim.analysis import flops
from paddleslim.nas import SANAS
from paddleslim.common import get_logger
from optimizer import create_optimizer
import imagenet_reader

_logger = get_logger(__name__, level=logging.INFO)

C
update  
ceci3 已提交
19

C
ceci3 已提交
20
def create_data_loader(image_shape):
C
update  
ceci3 已提交
21
    data_shape = [None] + image_shape
C
ceci3 已提交
22
    data = fluid.data(name='data', shape=data_shape, dtype='float32')
C
update  
ceci3 已提交
23
    label = fluid.data(name='label', shape=[None, 1], dtype='int64')
C
ceci3 已提交
24 25 26 27 28 29 30
    data_loader = fluid.io.DataLoader.from_generator(
        feed_list=[data, label],
        capacity=1024,
        use_double_buffer=True,
        iterable=True)
    return data_loader, data, label

C
update  
ceci3 已提交
31

C
ceci3 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
def conv_bn_layer(input,
                  filter_size,
                  num_filters,
                  stride,
                  padding='SAME',
                  num_groups=1,
                  act=None,
                  name=None,
                  use_cudnn=True):
    conv = fluid.layers.conv2d(
        input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
        groups=num_groups,
        act=None,
        use_cudnn=use_cudnn,
        param_attr=ParamAttr(name=name + '_weights'),
        bias_attr=False)
    bn_name = name + '_bn'
    return fluid.layers.batch_norm(
C
update  
ceci3 已提交
54 55 56 57 58 59
        input=conv,
        act=act,
        param_attr=ParamAttr(name=bn_name + '_scale'),
        bias_attr=ParamAttr(name=bn_name + '_offset'),
        moving_mean_name=bn_name + '_mean',
        moving_variance_name=bn_name + '_variance')
C
ceci3 已提交
60 61 62 63 64


def search_mobilenetv2_block(config, args, image_size):
    image_shape = [3, image_size, image_size]
    if args.is_server:
C
update  
ceci3 已提交
65 66
        sa_nas = SANAS(
            config,
C
ceci3 已提交
67
            server_addr=(args.server_address, args.port),
C
update  
ceci3 已提交
68 69
            search_steps=args.search_steps,
            is_server=True)
C
ceci3 已提交
70
    else:
C
update  
ceci3 已提交
71 72
        sa_nas = SANAS(
            config,
C
ceci3 已提交
73
            server_addr=(args.server_address, args.port),
C
update  
ceci3 已提交
74 75 76
            search_steps=args.search_steps,
            is_server=False)

C
ceci3 已提交
77 78 79 80 81 82 83 84
    for step in range(args.search_steps):
        archs = sa_nas.next_archs()[0]

        train_program = fluid.Program()
        test_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            train_loader, data, label = create_data_loader(image_shape)
C
update  
ceci3 已提交
85 86 87 88 89 90 91 92
            data = conv_bn_layer(
                input=data,
                num_filters=32,
                filter_size=3,
                stride=2,
                padding='SAME',
                act='relu6',
                name='mobilenetv2_conv1')
C
ceci3 已提交
93
            data = archs(data)[0]
C
update  
ceci3 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
            data = conv_bn_layer(
                input=data,
                num_filters=1280,
                filter_size=1,
                stride=1,
                padding='SAME',
                act='relu6',
                name='mobilenetv2_last_conv')
            data = fluid.layers.pool2d(
                input=data,
                pool_size=7,
                pool_stride=1,
                pool_type='avg',
                global_pooling=True,
                name='mobilenetv2_last_pool')
C
ceci3 已提交
109 110 111 112 113 114 115 116 117
            output = fluid.layers.fc(
                input=data,
                size=args.class_dim,
                param_attr=ParamAttr(name='mobilenetv2_fc_weights'),
                bias_attr=ParamAttr(name='mobilenetv2_fc_offset'))

            softmax_out = fluid.layers.softmax(input=output, use_cudnn=False)
            cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
            avg_cost = fluid.layers.mean(cost)
C
update  
ceci3 已提交
118 119 120 121
            acc_top1 = fluid.layers.accuracy(
                input=softmax_out, label=label, k=1)
            acc_top5 = fluid.layers.accuracy(
                input=softmax_out, label=label, k=5)
C
ceci3 已提交
122 123 124 125 126 127 128 129 130 131
            test_program = train_program.clone(for_test=True)

            optimizer = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            optimizer.minimize(avg_cost)

        current_flops = flops(train_program)
        print('step: {}, current_flops: {}'.format(step, current_flops))
C
ceci3 已提交
132
        if current_flops > int(321208544):
C
ceci3 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
            continue

        place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_program)

        if args.data == 'cifar10':
            train_reader = paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
                batch_size=args.batch_size,
                drop_last=True)

            test_reader = paddle.batch(
                paddle.dataset.cifar.test10(cycle=False),
                batch_size=args.batch_size,
                drop_last=False)
        elif args.data == 'imagenet':
            train_reader = paddle.batch(
                imagenet_reader.train(),
                batch_size=args.batch_size,
                drop_last=True)
            test_reader = paddle.batch(
                imagenet_reader.val(),
                batch_size=args.batch_size,
                drop_last=False)

        test_loader, _, _ = create_data_loader(image_shape)
        train_loader.set_sample_list_generator(
            train_reader,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
        test_loader.set_sample_list_generator(test_reader, places=place)

        build_strategy = fluid.BuildStrategy()
        train_compiled_program = fluid.CompiledProgram(
            train_program).with_data_parallel(
                loss_name=avg_cost.name, build_strategy=build_strategy)
C
ceci3 已提交
170
        for epoch_id in range(args.retain_epoch):
C
ceci3 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184
            for batch_id, data in enumerate(train_loader()):
                fetches = [avg_cost.name]
                s_time = time.time()
                outs = exe.run(train_compiled_program,
                               feed=data,
                               fetch_list=fetches)[0]
                batch_time = time.time() - s_time
                if batch_id % 10 == 0:
                    _logger.info(
                        'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'.
                        format(step, epoch_id, batch_id, outs[0], batch_time))

        reward = []
        for batch_id, data in enumerate(test_loader()):
C
update  
ceci3 已提交
185
            test_fetches = [avg_cost.name, acc_top1.name, acc_top5.name]
C
ceci3 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'.
                format(step, batch_id, batch_reward[0], batch_reward[1],
                       batch_reward[2]))

        finally_reward = np.mean(np.array(reward), axis=0)
        _logger.info(
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
                finally_reward[0], finally_reward[1], finally_reward[2]))

        sa_nas.reward(float(finally_reward[1]))

C
update  
ceci3 已提交
204

C
ceci3 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
if __name__ == '__main__':

    parser = argparse.ArgumentParser(
        description='SA NAS MobileNetV2 cifar10 argparase')
    parser.add_argument(
        '--use_gpu',
        type=ast.literal_eval,
        default=True,
        help='Whether to use GPU in train/test model.')
    parser.add_argument(
        '--class_dim', type=int, default=1000, help='classify number.')
    parser.add_argument(
        '--batch_size', type=int, default=256, help='batch size.')
    parser.add_argument(
        '--data',
        type=str,
        default='cifar10',
        choices=['cifar10', 'imagenet'],
C
update  
ceci3 已提交
223
        help='dataset name.')
C
ceci3 已提交
224 225 226 227 228 229 230 231 232 233 234
    parser.add_argument(
        '--is_server',
        type=ast.literal_eval,
        default=True,
        help='Whether to start a server.')
    # nas args
    parser.add_argument(
        '--search_steps',
        type=int,
        default=100,
        help='controller server number.')
C
ceci3 已提交
235 236 237 238 239
    parser.add_argument(
        '--server_address', type=str, default="", help='server ip.')
    parser.add_argument('--port', type=int, default=8881, help='server port')
    parser.add_argument(
        '--retain_epoch', type=int, default=5, help='epoch for each token.')
C
ceci3 已提交
240 241 242 243 244 245 246 247 248
    parser.add_argument('--lr', type=float, default=0.1, help='learning rate.')
    args = parser.parse_args()
    print(args)

    if args.data == 'cifar10':
        image_size = 32
    elif args.data == 'imagenet':
        image_size = 224
    else:
C
update  
ceci3 已提交
249
        raise NotImplementedError(
C
ceci3 已提交
250 251 252 253
            'data must in [cifar10, imagenet], but received: {}'.format(
                args.data))

    # block mask means block number, 1 mean downsample, 0 means the size of feature map don't change after this block
C
ceci3 已提交
254
    config_info = {'block_mask': [0, 1, 1, 1, 0]}
C
ceci3 已提交
255 256 257
    config = [('MobileNetV2BlockSpace', config_info)]

    search_mobilenetv2_block(config, args, image_size)