block_sa_nas_mobilenetv2.py 10.5 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
import sys
sys.path.append('..')
import numpy as np
import argparse
import ast
import logging
import time
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddleslim.analysis import flops
from paddleslim.nas import SANAS
from paddleslim.common import get_logger
from optimizer import create_optimizer
import imagenet_reader

_logger = get_logger(__name__, level=logging.INFO)

def create_data_loader(image_shape):
    data_shape = [-1] + image_shape
    data = fluid.data(name='data', shape=data_shape, dtype='float32')
    label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
    data_loader = fluid.io.DataLoader.from_generator(
        feed_list=[data, label],
        capacity=1024,
        use_double_buffer=True,
        iterable=True)
    return data_loader, data, label

def conv_bn_layer(input,
                  filter_size,
                  num_filters,
                  stride,
                  padding='SAME',
                  num_groups=1,
                  act=None,
                  name=None,
                  use_cudnn=True):
    conv = fluid.layers.conv2d(
        input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
        groups=num_groups,
        act=None,
        use_cudnn=use_cudnn,
        param_attr=ParamAttr(name=name + '_weights'),
        bias_attr=False)
    bn_name = name + '_bn'
    return fluid.layers.batch_norm(
               input=conv,
               act = act,
               param_attr=ParamAttr(name=bn_name + '_scale'),
               bias_attr=ParamAttr(name=bn_name + '_offset'),
               moving_mean_name=bn_name + '_mean',
               moving_variance_name=bn_name + '_variance')



def search_mobilenetv2_block(config, args, image_size):
    image_shape = [3, image_size, image_size]
    if args.is_server:
        sa_nas = SANAS(config, server_addr=("", args.port), init_temperature=args.init_temperature, reduce_rate=args.reduce_rate, search_steps=args.search_steps, is_server=True)
    else:
        sa_nas = SANAS(config, server_addr=(args.server_address, args.port), init_temperature=args.init_temperature, reduce_rate=args.reduce_rate, search_steps=args.search_steps, is_server=False)
        
    for step in range(args.search_steps):
        archs = sa_nas.next_archs()[0]

        train_program = fluid.Program()
        test_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            train_loader, data, label = create_data_loader(image_shape)
            data = conv_bn_layer(input=data, num_filters=32, filter_size=3, stride=2, padding='SAME', act='relu6', name='mobilenetv2_conv1')
            data = archs(data)[0]
            data = conv_bn_layer(input=data, num_filters=1280, filter_size=1, stride=1, padding='SAME', act='relu6', name='mobilenetv2_last_conv')
            data = fluid.layers.pool2d(input=data, pool_size=7, pool_stride=1, pool_type='avg', global_pooling=True, name='mobilenetv2_last_pool')
            output = fluid.layers.fc(
                input=data,
                size=args.class_dim,
                param_attr=ParamAttr(name='mobilenetv2_fc_weights'),
                bias_attr=ParamAttr(name='mobilenetv2_fc_offset'))

            softmax_out = fluid.layers.softmax(input=output, use_cudnn=False)
            cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
            avg_cost = fluid.layers.mean(cost)
            acc_top1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
            acc_top5 = fluid.layers.accuracy(input=softmax_out, label=label, k=5)
            test_program = train_program.clone(for_test=True)

            optimizer = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            optimizer.minimize(avg_cost)

        current_flops = flops(train_program)
        print('step: {}, current_flops: {}'.format(step, current_flops))
        if current_flops > args.max_flops:
            continue

        place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_program)

        if args.data == 'cifar10':
            train_reader = paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
                batch_size=args.batch_size,
                drop_last=True)

            test_reader = paddle.batch(
                paddle.dataset.cifar.test10(cycle=False),
                batch_size=args.batch_size,
                drop_last=False)
        elif args.data == 'imagenet':
            train_reader = paddle.batch(
                imagenet_reader.train(),
                batch_size=args.batch_size,
                drop_last=True)
            test_reader = paddle.batch(
                imagenet_reader.val(),
                batch_size=args.batch_size,
                drop_last=False)

        test_loader, _, _ = create_data_loader(image_shape)
        train_loader.set_sample_list_generator(
            train_reader,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
        test_loader.set_sample_list_generator(test_reader, places=place)


        build_strategy = fluid.BuildStrategy()
        train_compiled_program = fluid.CompiledProgram(
            train_program).with_data_parallel(
                loss_name=avg_cost.name, build_strategy=build_strategy)
        for epoch_id in range(args.retain_epoch):
            for batch_id, data in enumerate(train_loader()):
                fetches = [avg_cost.name]
                s_time = time.time()
                outs = exe.run(train_compiled_program,
                               feed=data,
                               fetch_list=fetches)[0]
                batch_time = time.time() - s_time
                if batch_id % 10 == 0:
                    _logger.info(
                        'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'.
                        format(step, epoch_id, batch_id, outs[0], batch_time))

        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                avg_cost.name, acc_top1.name, acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'.
                format(step, batch_id, batch_reward[0], batch_reward[1],
                       batch_reward[2]))

        finally_reward = np.mean(np.array(reward), axis=0)
        _logger.info(
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
                finally_reward[0], finally_reward[1], finally_reward[2]))

        sa_nas.reward(float(finally_reward[1]))

if __name__ == '__main__':

    parser = argparse.ArgumentParser(
        description='SA NAS MobileNetV2 cifar10 argparase')
    parser.add_argument(
        '--use_gpu',
        type=ast.literal_eval,
        default=True,
        help='Whether to use GPU in train/test model.')
    parser.add_argument(
        '--class_dim', type=int, default=1000, help='classify number.')
    parser.add_argument(
        '--batch_size', type=int, default=256, help='batch size.')
    parser.add_argument(
        '--data',
        type=str,
        default='cifar10',
        choices=['cifar10', 'imagenet'],
        help='server address.')
    # controller
    parser.add_argument(
        '--reduce_rate', type=float, default=0.85, help='reduce rate.')
    parser.add_argument(
        '--init_temperature',
        type=float,
        default=10.24,
        help='init temperature.')
    parser.add_argument(
        '--is_server',
        type=ast.literal_eval,
        default=True,
        help='Whether to start a server.')
    # nas args
    parser.add_argument(
        '--max_flops', type=int, default=592948064, help='reduce rate.')
    parser.add_argument(
        '--retain_epoch', type=int, default=5, help='train epoch before val.')
    parser.add_argument(
        '--end_epoch', type=int, default=500, help='end epoch present client.')
    parser.add_argument(
        '--search_steps',
        type=int,
        default=100,
        help='controller server number.')
    parser.add_argument(
        '--server_address', type=str, default=None, help='server address.')
    parser.add_argument(
        '--port', type=int, default=8889, help='server port.')
    # optimizer args
    parser.add_argument(
        '--lr_strategy',
        type=str,
        default='piecewise_decay',
        help='learning rate decay strategy.')
    parser.add_argument('--lr', type=float, default=0.1, help='learning rate.')
    parser.add_argument(
        '--l2_decay', type=float, default=1e-4, help='learning rate decay.')
    parser.add_argument(
        '--step_epochs',
        nargs='+',
        type=int,
        default=[30, 60, 90],
        help="piecewise decay step")
    parser.add_argument(
        '--momentum_rate',
        type=float,
        default=0.9,
        help='learning rate decay.')
    parser.add_argument(
        '--warm_up_epochs',
        type=float,
        default=5.0,
        help='learning rate decay.')
    parser.add_argument(
        '--num_epochs', type=int, default=120, help='learning rate decay.')
    parser.add_argument(
        '--decay_epochs', type=float, default=2.4, help='learning rate decay.')
    parser.add_argument(
        '--decay_rate', type=float, default=0.97, help='learning rate decay.')
    parser.add_argument(
        '--total_images',
        type=int,
        default=1281167,
        help='learning rate decay.')
    args = parser.parse_args()
    print(args)

    if args.data == 'cifar10':
        image_size = 32
    elif args.data == 'imagenet':
        image_size = 224
    else:
        raise NotImplemented(
            'data must in [cifar10, imagenet], but received: {}'.format(
                args.data))

    # block mask means block number, 1 mean downsample, 0 means the size of feature map don't change after this block
    config_info = {
        'input_size': None,
        'output_size': None,
        'block_num': None,
        'block_mask': [0, 1, 1, 1, 1, 0, 1, 0]
    }
    config = [('MobileNetV2BlockSpace', config_info)]

    search_mobilenetv2_block(config, args, image_size)