single_distiller.py 18.1 KB
Newer Older
Y
yangfukui 已提交
1 2 3 4 5
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Y
yangfukui 已提交
6
#
Y
yangfukui 已提交
7 8 9 10 11 12 13 14
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
yangfukui 已提交
15
import numpy as np
16
import paddle
17
from ..common.recover_program import _recover_outputs_attr
I
itminner 已提交
18
from paddleslim.core import GraphWrapper
Z
zhouzj 已提交
19
import paddle.nn.functional as F
Y
yangfukui 已提交
20 21


C
ceci3 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def _find_var_from_program(program, var_name):
    for block in program.blocks:
        if block.has_var(var_name):
            return block.var(var_name)
    raise ValueError("var {} not in this program".format(var_name))


def _except_feed_fetch(var_name, merge_feed):
    if var_name != 'fetch' and (not merge_feed or var_name != 'feed'):
        return True
    return False


def _is_same_block(block1, block2):
    if len(block1.ops) != len(block2.ops):
        return False

    for op1, op2 in zip(block1.ops, block2.ops):
        if op1.type != op2.type:
            return False

    return True


Y
yangfukui 已提交
46 47 48 49
def merge(teacher_program,
          student_program,
          data_name_map,
          place,
B
Bai Yifan 已提交
50
          scope=None,
C
Chang Xu 已提交
51
          teacher_scope=None,
C
ceci3 已提交
52 53
          name_prefix='teacher_',
          merge_feed=True):
B
Bai Yifan 已提交
54
    """Merge teacher program into student program and add a uniform prefix to the
Y
yangfukui 已提交
55
    names of all vars in teacher program
B
Bai Yifan 已提交
56

Y
yangfukui 已提交
57 58 59
    Args:
        teacher_program(Program): The input teacher model paddle program 
        student_program(Program): The input student model paddle program
B
Bai Yifan 已提交
60 61 62 63
        data_map_map(dict): Mapping of teacher input interface name and student
                            input interface name, where key of dict is the
                            input name of teacher_program, and value is the
                            input name of student_program.
64
        place(CPUPlace()|CUDAPlace(N)): This parameter represents
Y
yangfukui 已提交
65
                                                    paddle run on which device.
B
Bai Yifan 已提交
66 67 68
        scope(Scope): This parameter indicates the variable scope used by
                      the program. If not specified, the default global scope
                      will be used. Default: None
Y
yangfukui 已提交
69
        name_prefix(str): Name prefix added for all vars of the teacher program.
B
Bai Yifan 已提交
70
                          Default: 'teacher_'
C
ceci3 已提交
71
        merge_feed(bool): Wheather to merge feed op when merge program. Default: True.
B
Bai Yifan 已提交
72 73 74

    Returns:
        None
Y
yangfukui 已提交
75
    """
76 77
    if scope == None:
        scope = paddle.static.global_scope()
C
Chang Xu 已提交
78 79
    if teacher_scope == None:
        teacher_scope = scope
80

Y
yangfukui 已提交
81
    teacher_program = teacher_program.clone(for_test=True)
82
    teacher_program = _recover_outputs_attr(teacher_program)
C
ceci3 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    is_same_model = True
    if len(student_program.blocks) == len(teacher_program.blocks):
        for block in teacher_program.blocks:
            if not _is_same_block(block, student_program.block(block.idx)):
                is_same_model = False
                break
    else:
        is_same_model = False

    if is_same_model:
        for block in student_program.blocks:
            for op in block.ops:
                if op.type == 'while':
                    tmp_var = []
                    for _var_name in op.input('X'):
                        tmp_var.append('teacher_' + _var_name)
                    tmp_var.extend(op.input('X'))
                    op.desc.set_input("X", tmp_var)
Y
yangfukui 已提交
102 103

    for block in teacher_program.blocks:
C
ceci3 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        for teacher_var in list(block.vars.values()):
            skip_rename = False
            if _except_feed_fetch(teacher_var.name, merge_feed):
                if teacher_var.name in data_name_map.keys():
                    new_name = data_name_map[teacher_var.name]
                    if new_name == teacher_var.name:
                        skip_rename = True
                else:
                    new_name = name_prefix + teacher_var.name
                if not skip_rename:
                    # scope var rename
                    old_var = teacher_scope.var(teacher_var.name).get_tensor()
                    renamed_var = scope.var(new_name).get_tensor()
                    renamed_var.set(np.array(old_var), place)

                    # program var rename
                    renamed_var = block._rename_var(teacher_var.name, new_name)

        ### input and output of the sub_block need to rename specially.
Y
yangfukui 已提交
123
        for op in block.ops:
C
ceci3 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if _except_feed_fetch(
                            in_var_name,
                            merge_feed) and not block.has_var(in_var_name):
                        if in_var_name in data_name_map.keys():
                            new_name = data_name_map[in_var_name]
                            if new_name != in_var_name:
                                op._rename_input(in_var_name,
                                                 name_prefix + in_var_name)
                        else:
                            op._rename_input(in_var_name,
                                             name_prefix + in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    if _except_feed_fetch(
                            out_var_name,
                            merge_feed) and not block.has_var(out_var_name):
                        if out_var_name in data_name_map.keys():
                            new_name = data_name_map[out_var_name]
                            if new_name != out_var_name:
                                op._rename_output(out_var_name,
                                                  name_prefix + out_var_name)
                        else:
                            op._rename_output(out_var_name,
                                              name_prefix + out_var_name)

    for block in teacher_program.blocks:
        for teacher_var in list(block.vars.values()):
            if teacher_var.name != 'fetch' and (not merge_feed or
                                                teacher_var.name != 'feed'):
                # student program add var
                if len(student_program.blocks) > 1 and is_same_model:
                    new_var = student_program.block(block.idx)._clone_variable(
                        teacher_var, force_persistable=False)
                else:
                    new_var = student_program.global_block()._clone_variable(
                        teacher_var, force_persistable=False)
                new_var.stop_gradient = True

    for block in reversed(teacher_program.blocks):
        for op_idx, op in enumerate(block.ops):
C
ceci3 已提交
167
            if (not merge_feed or op.type != 'feed') and op.type != 'fetch':
Y
yangfukui 已提交
168 169 170 171
                inputs = {}
                outputs = {}
                attrs = {}
                for input_name in op.input_names:
C
ceci3 已提交
172 173 174 175
                    inputs[input_name] = []
                    for in_var_name in op.input(input_name):
                        inputs[input_name].append(
                            block._find_var_recursive(in_var_name))
Y
yangfukui 已提交
176 177

                for output_name in op.output_names:
C
ceci3 已提交
178 179 180 181 182
                    outputs[output_name] = []
                    for out_var_name in op.output(output_name):
                        outputs[output_name].append(
                            block._find_var_recursive(out_var_name))

Y
yangfukui 已提交
183
                for attr_name in op.attr_names:
C
ceci3 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
                    if attr_name == 'sub_block':
                        attrs[attr_name] = student_program.block(
                            op._block_attr("sub_block").idx)
                    else:
                        attrs[attr_name] = op.attr(attr_name)
                if len(student_program.blocks) > 1 and is_same_model:
                    student_program.block(op.block.idx)._insert_op(
                        2 * op_idx,
                        type=op.type,
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs)
                else:
                    student_program.global_block().append_op(
                        type=op.type,
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs)

        student_program._sync_with_cpp()
Y
yangfukui 已提交
204

I
itminner 已提交
205 206 207 208 209 210 211 212 213 214
    student_graph = GraphWrapper(student_program)
    for op in student_graph.ops():
        belongsto_teacher = False
        for inp in op.all_inputs():
            if 'teacher' in inp.name():
                belongsto_teacher = True
                break
        if belongsto_teacher:
            op._op._set_attr("skip_quant", True)

Y
yangfukui 已提交
215

C
ceci3 已提交
216 217 218 219 220
def fsp(teacher_var1_name,
        teacher_var2_name,
        student_var1_name,
        student_var2_name,
        program=None):
B
Bai Yifan 已提交
221 222
    """Combine variables from student model and teacher model by fsp-loss.

Y
yangfukui 已提交
223 224 225 226 227 228 229 230 231
    Args:
        teacher_var1_name(str): The name of teacher_var1.
        teacher_var2_name(str): The name of teacher_var2. Except for the
            second dimension, all other dimensions should
            be consistent with teacher_var1.
        student_var1_name(str): The name of student_var1.
        student_var2_name(str): The name of student_var2. Except for the
            second dimension, all other dimensions should
            be consistent with student_var1.
B
Bai Yifan 已提交
232 233 234 235 236
        program(Program): The input distiller program. If not specified,
                          the default program will be used. Default: None

    Returns:
        Variable: fsp distiller loss.
Y
yangfukui 已提交
237
    """
238 239
    if program == None:
        program = paddle.static.default_main_program()
C
ceci3 已提交
240 241 242 243
    teacher_var1 = _find_var_from_program(program, teacher_var1_name)
    teacher_var2 = _find_var_from_program(program, teacher_var2_name)
    student_var1 = _find_var_from_program(program, student_var1_name)
    student_var2 = _find_var_from_program(program, student_var2_name)
244 245 246 247 248 249 250
    teacher_fsp_matrix = paddle.fluid.layers.fsp_matrix(teacher_var1,
                                                        teacher_var2)
    student_fsp_matrix = paddle.fluid.layers.fsp_matrix(student_var1,
                                                        student_var2)
    fsp_loss = paddle.mean(
        paddle.nn.functional.square_error_cost(student_fsp_matrix,
                                               teacher_fsp_matrix))
Y
yangfukui 已提交
251 252 253
    return fsp_loss


C
ceci3 已提交
254
def l2(teacher_var_name, student_var_name, program=None):
B
Bai Yifan 已提交
255 256
    """Combine variables from student model and teacher model by l2-loss.

Y
yangfukui 已提交
257 258 259
    Args:
        teacher_var_name(str): The name of teacher_var.
        student_var_name(str): The name of student_var.
B
Bai Yifan 已提交
260 261 262 263 264
        program(Program): The input distiller program. If not specified,
                          the default program will be used. Default: None

    Returns: 
        Variable: l2 distiller loss.
Y
yangfukui 已提交
265
    """
266 267
    if program == None:
        program = paddle.static.default_main_program()
C
ceci3 已提交
268 269
    student_var = _find_var_from_program(program, student_var_name)
    teacher_var = _find_var_from_program(program, teacher_var_name)
270 271
    l2_loss = paddle.mean(
        paddle.nn.functional.square_error_cost(student_var, teacher_var))
Y
yangfukui 已提交
272 273 274
    return l2_loss


C
ceci3 已提交
275 276 277 278 279
def soft_label(teacher_var_name,
               student_var_name,
               program=None,
               teacher_temperature=1.,
               student_temperature=1.):
B
Bai Yifan 已提交
280 281
    """Combine variables from student model and teacher model by soft-label-loss.

Y
yangfukui 已提交
282 283 284
    Args:
        teacher_var_name(str): The name of teacher_var.
        student_var_name(str): The name of student_var.
B
Bai Yifan 已提交
285 286
        program(Program): The input distiller program. If not specified,
                          the default program will be used. Default: None
Y
yangfukui 已提交
287
        teacher_temperature(float): Temperature used to divide
B
Bai Yifan 已提交
288
            teacher_feature_map before softmax. Default: 1.0
Y
yangfukui 已提交
289
        student_temperature(float): Temperature used to divide 
B
Bai Yifan 已提交
290 291 292 293
            student_feature_map before softmax. Default: 1.0

    Returns:
        Variable: l2 distiller loss.
Y
yangfukui 已提交
294
    """
295 296
    if program == None:
        program = paddle.static.default_main_program()
C
ceci3 已提交
297 298
    student_var = _find_var_from_program(program, student_var_name)
    teacher_var = _find_var_from_program(program, teacher_var_name)
Y
yangfukui 已提交
299
    teacher_var.stop_gradient = True
300 301 302 303 304 305

    student_var = paddle.nn.functional.softmax(student_var /
                                               student_temperature)
    teacher_var = paddle.nn.functional.softmax(teacher_var /
                                               teacher_temperature)
    soft_label_loss = paddle.mean(
W
whs 已提交
306
        paddle.nn.functional.cross_entropy(
Z
zhouzj 已提交
307 308 309 310
            input=student_var,
            label=teacher_var,
            soft_label=True,
            use_softmax=False))
Y
yangfukui 已提交
311 312 313
    return soft_label_loss


B
Bai Yifan 已提交
314 315 316
def loss(loss_func, program=None, **kwargs):
    """Combine variables from student model and teacher model by self defined loss.

Y
yangfukui 已提交
317
    Args:
B
Bai Yifan 已提交
318 319
        program(Program): The input distiller program. If not specified,
                          the default program will be used. Default: None
Y
yangfukui 已提交
320
        loss_func(function): The user self defined loss function. 
B
Bai Yifan 已提交
321 322 323

    Returns: 
        Variable: self defined distiller loss.
Y
yangfukui 已提交
324
    """
325 326
    if program == None:
        program = paddle.static.default_main_program()
Y
yangfukui 已提交
327 328 329 330
    func_parameters = {}
    for item in kwargs.items():
        if isinstance(item[1], str):
            func_parameters.setdefault(item[0],
C
ceci3 已提交
331
                                       _find_var_from_program(program, item[1]))
Y
yangfukui 已提交
332 333 334 335
        else:
            func_parameters.setdefault(item[0], item[1])
    loss = loss_func(**func_parameters)
    return loss
W
whs 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402


def _top_mask(x):
    top_value, top_index = paddle.topk(x, 1)
    return paddle.cast(x == top_value, "int32")


def _cal_tc_nc_pred(x, top_mask):
    """Calculate the predictions of target class and non-target class.
    The predictions of target class is a binary distribution.
    And after removing the target class, the softmax on the remaining
    parts produces the non-target predictions.
    """
    pred = paddle.nn.functional.softmax(x)
    fp_mask = paddle.cast(top_mask, "float32")
    top_value = paddle.sum(fp_mask * pred, axis=1, keepdim=True)
    tc_pred = paddle.concat([top_value, 1 - top_value], axis=1)
    tmp = paddle.assign(x)
    tmp = tmp + (-100000 * top_mask)
    nc_pred = paddle.nn.functional.softmax(tmp)
    return tc_pred, nc_pred


def _dkd_loss(student_logits,
              teacher_logits,
              temperature=1.0,
              alpha=1.0,
              beta=1.0):
    mask = _top_mask(teacher_logits)
    print(f"mask: {mask.shape}")
    print(
        f"student_logits: {student_logits.shape}; teacher_logits: {teacher_logits.shape}"
    )
    s_tc_pred, s_nc_pred = _cal_tc_nc_pred(student_logits / temperature, mask)
    t_tc_pred, t_nc_pred = _cal_tc_nc_pred(teacher_logits / temperature, mask)
    tc_loss = paddle.nn.functional.kl_div(
        s_tc_pred, t_tc_pred, reduction='mean')
    nc_loss = paddle.nn.functional.kl_div(
        s_nc_pred, t_nc_pred, reduction='mean')
    loss = alpha * tc_loss + beta * nc_loss
    return loss * temperature**2


def dkd(teacher_var_name,
        student_var_name,
        program=None,
        temperature=1.0,
        alpha=1.0,
        beta=1.0):
    """Combine variables from student model and teacher model
    by Decoupled Knowledge Distillation loss (aka. dkd-loss).
    Reference: https://github.com/megvii-research/mdistiller
    Args:
        teacher_var_name(str): The name of teacher_var.
        student_var_name(str): The name of student_var.
        program(Program): The input distiller program. If not specified,
                          the default program will be used. Default: None
        temperature(float): Temperature used to divide
            teacher_feature_map before softmax. Default: 1.0
        alpha(float): The weight of target class loss. Default: 1.0
        beta(float): The weight of none-target class loss. Default: 1.0

    Returns: 
        Variable: dkd distiller loss.
    """
    if program == None:
        program = paddle.static.default_main_program()
C
ceci3 已提交
403 404
    student_var = _find_var_from_program(program, student_var_name)
    teacher_var = _find_var_from_program(program, teacher_var_name)
W
whs 已提交
405 406 407 408 409 410
    return _dkd_loss(
        student_var,
        teacher_var,
        temperature=temperature,
        alpha=alpha,
        beta=beta)
Z
zhouzj 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460


def skd(teacher_var_name, student_var_name, program=None, multiplier=None):
    """Combine variables from student model and teacher model 
    by Spherical Knowledge Distillation loss (aka. skd-loss).
    Reference: https://github.com/forjiuzhou/Spherical-Knowledge-Distillation
    Args:
        teacher_var_name(str): The name of teacher_var.
        student_var_name(str): The name of student_var.
        program(Program): The input distiller program. If not specified,
                          the default program will be used. Default: None
        multiplier(float): The multiplier to recover its norm to the original 
        level. When it's None, the appropriate multiplier can be computed by 
        teacher's logits with paddle.std(output_t, axis=1). Default: None.

    Returns:
        Variable: skd distiller loss.
    """
    if program == None:
        program = paddle.static.default_main_program()

    student_var = program.global_block().var(student_var_name)
    teacher_var = program.global_block().var(teacher_var_name)
    teacher_var.stop_gradient = True

    if multiplier is None:
        multiplier = paddle.std(teacher_var, axis=1, keepdim=True)

    logits_student = F.layer_norm(
        student_var,
        student_var.shape[1:],
        weight=None,
        bias=None,
        epsilon=1e-7) * multiplier
    logits_teacher = F.layer_norm(
        teacher_var,
        teacher_var.shape[1:],
        weight=None,
        bias=None,
        epsilon=1e-7) * multiplier

    student_out = F.softmax(logits_student, axis=1)
    teacher_out = F.softmax(logits_teacher, axis=1)
    skd_loss = paddle.mean(
        F.cross_entropy(
            input=student_out,
            label=teacher_out,
            soft_label=True,
            use_softmax=False))
    return skd_loss