test_latency_predictor.py 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys, os
sys.path.append("../")
import unittest
import paddle
import paddleslim
from paddleslim.analysis import LatencyPredictor, TableLatencyPredictor
from paddle.vision.models import mobilenet_v1, mobilenet_v2
from paddle.nn import Conv2D, BatchNorm2D, ReLU, LayerNorm
Z
zhouzj 已提交
22
from paddleslim.analysis._utils import opt_model, save_cls_model, save_det_model
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100


def channel_shuffle(x, groups):
    batch_size, num_channels, height, width = x.shape[0:4]
    channels_per_group = num_channels // groups

    x = paddle.reshape(
        x=x, shape=[batch_size, groups, channels_per_group, height, width])

    x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4])

    x = paddle.reshape(x=x, shape=[batch_size, num_channels, height, width])
    return x


class ModelCase1(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase1, self).__init__()
        self.conv1 = Conv2D(58, 58, 1)
        self.conv2 = Conv2D(58, 58, 1)

    def forward(self, inputs):
        x1, x2 = paddle.split(
            inputs,
            num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
            axis=1)
        x1 = self.conv1(x1)
        x2 = self.conv2(x2)
        out = paddle.concat([x1, x2], axis=1)
        return channel_shuffle(out, 2)


class ModelCase2(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase2, self).__init__()
        self.conv1 = Conv2D(3, 24, 3, stride=2, padding=1)

    def forward(self, inputs):
        image = inputs['image']

        return self.conv1(image)


class ModelCase3(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase3, self).__init__()
        self.conv1 = Conv2D(3, 24, 3, stride=2, padding=1)

    def forward(self, inputs):
        image = inputs['image']
        im_shape = inputs['im_shape']
        scale_factor = inputs['scale_factor']

        return self.conv1(image), im_shape, scale_factor


class ModelCase4(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase4, self).__init__()
        self.bn1 = BatchNorm2D(3)
        self.ln1 = LayerNorm([3 * 16 * 16])
        self.relu1 = ReLU()
        self.fc1 = paddle.nn.Linear(3 * 16 * 16, 3 * 16 * 16)

    def forward(self, inputs):
        x = self.bn1(inputs)
        x = paddle.reshape(x, [1, 3 * 16 * 16])
        x = self.ln1(x)
        x = self.fc1(x)
        x = paddle.fluid.layers.unsqueeze(input=x, axes=[2])
        x = self.relu1(x)
        y = paddle.fluid.layers.fill_constant(
            x.shape, dtype=paddle.float32, value=1)
        x = paddle.stack([x, y], axis=3)
        x = paddle.slice(x, axes=[0], starts=[0], ends=[1])
        x = paddle.exp(x)
        y += paddle.fluid.layers.uniform_random(y.shape)
        y = paddle.fluid.layers.reduce_mean(y, dim=1, keep_dim=True)
101
        return paddle.greater_equal(x, y)
102 103 104 105 106 107 108 109 110 111 112


class ModelCase5(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase5, self).__init__()
        self.bn1 = BatchNorm2D(255)

    def forward(self, inputs):
        image = inputs['image']
        image = self.bn1(image)
        img_size = paddle.fluid.data(
Z
zhouzj 已提交
113
            name='img_size', shape=[None, 2], dtype='int32')
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        anchors = [10, 13, 16, 30, 33, 23]
        boxes, scores = paddle.fluid.layers.yolo_box(
            x=image,
            img_size=img_size,
            class_num=80,
            anchors=anchors,
            conf_thresh=0.01,
            downsample_ratio=32)
        out = paddle.fluid.layers.matrix_nms(
            bboxes=boxes,
            scores=scores,
            background_label=0,
            score_threshold=0.5,
            post_threshold=0.1,
            nms_top_k=400,
            keep_top_k=200,
            normalized=False)
        box, var = paddle.fluid.layers.prior_box(
            input=image, image=image, min_sizes=[2.], clip=True, flip=True)
        return boxes, scores, box, var, out


136 137 138 139 140 141 142
class ModelCase6(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase6, self).__init__()
        self.bn1 = BatchNorm2D(3)
        self.relu1 = ReLU()
        self.fc1 = paddle.nn.Linear(3 * 16 * 16, 3 * 16 * 16)
        self.dp = paddle.nn.Dropout(p=0.5)
143 144
        self.lstm = paddle.nn.LSTM(
            1536, 10, direction='bidirectional', num_layers=2)
145 146 147 148 149 150 151 152 153

    def forward(self, inputs):
        x = self.bn1(inputs)
        x = paddle.reshape(x, [1, 3 * 16 * 16])
        x = self.fc1(x)
        x = paddle.fluid.layers.unsqueeze(input=x, axes=[2])
        x = self.relu1(x)
        y = paddle.fluid.layers.fill_constant(
            x.shape, dtype=paddle.float32, value=1)
154
        # x = paddle.stack([x, y], axis=3)
155 156
        x = paddle.slice(x, axes=[0], starts=[0], ends=[1])
        x = paddle.exp(x)
157
        # y += paddle.fluid.layers.uniform_random(y.shape)
158 159 160 161 162 163
        y = paddle.expand(y, shape=[1, 768, 768, 2])
        x = paddle.expand(x, shape=[1, 768, 768, 2])
        out = paddle.concat([x, y])
        out = self.dp(out)
        out = channel_shuffle(out, 2)
        out1, out2 = paddle.split(out, num_or_sections=2, axis=1)
164 165 166 167 168 169 170 171
        outshape = out1.shape
        max_idx = paddle.argmax(
            out1.reshape((outshape[0], outshape[1], outshape[2] * outshape[3])),
            axis=-1)
        out2 = out2.reshape(
            (outshape[0], outshape[1], outshape[2] * outshape[3]))
        res, _ = self.lstm(out2)
        return res, max_idx
172 173 174 175 176 177 178 179 180 181 182


class ModelCase7(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase7, self).__init__()
        self.bn1 = BatchNorm2D(255)

    def forward(self, inputs):
        image = inputs['image']
        image = self.bn1(image)
        img_size = paddle.fluid.data(
Z
zhouzj 已提交
183
            name='img_size', shape=[None, 2], dtype='int32')
184 185 186 187 188 189 190 191 192 193 194 195 196
        anchors = [10, 13, 16, 30, 33, 23]
        boxes, scores = paddle.fluid.layers.yolo_box(
            x=image,
            img_size=img_size,
            class_num=80,
            anchors=anchors,
            conf_thresh=0.01,
            downsample_ratio=32)
        box, var = paddle.fluid.layers.prior_box(
            input=image, image=image, min_sizes=[2.], clip=True, flip=True)
        return boxes, scores, box, var


Z
zhouzj 已提交
197 198 199 200 201 202 203 204 205 206 207
class TestCase(unittest.TestCase):
    def setUp(slef):
        os.system(
            'wget -q https://bj.bcebos.com/v1/paddle-slim-models/LatencyPredictor/test_mobilenetv1.tar'
        )
        os.system('tar -xf test_mobilenetv1.tar')
        os.system(
            'wget -q https://bj.bcebos.com/v1/paddle-slim-models/LatencyPredictor/test_mobilenetv1_qat.tar'
        )
        os.system('tar -xf test_mobilenetv1_qat.tar')

208 209
    def test_case1(self):
        paddle.disable_static()
210
        predictor = TableLatencyPredictor(table_file='SD710')
Z
zhouzj 已提交
211 212
        model_file = 'test_mobilenetv1/inference.pdmodel'
        param_file = 'test_mobilenetv1/inference.pdiparams'
213 214
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
Z
zhouzj 已提交
215
        assert latency > 0
216

Z
zhouzj 已提交
217 218
        model_file = 'test_mobilenetv1_qat/inference.pdmodel'
        param_file = 'test_mobilenetv1_qat/inference.pdiparams'
219 220
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='int8')
221 222 223 224
        assert latency > 0


class TestCase2(unittest.TestCase):
Z
zhouzj 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    def setUp(slef):
        os.system(
            'wget -q https://bj.bcebos.com/v1/paddle-slim-models/LatencyPredictor/test_mobilenetv2.tar'
        )
        os.system('tar -xf test_mobilenetv2.tar')
        os.system(
            'wget -q https://bj.bcebos.com/v1/paddle-slim-models/LatencyPredictor/test_mobilenetv2_qat.tar'
        )
        os.system('tar -xf test_mobilenetv2_qat.tar')

    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())

        model_name = '.'.join(model_filename.split('.')[:-1])
        model_path_prefix = os.path.join(model_dir, model_name)
        [inference_program, feed_target_names, fetch_targets] = (
            paddle.static.load_inference_model(
                path_prefix=model_path_prefix, executor=exe))

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
        os.makedirs(save_path)
        paddle.static.save_inference_model(
            save_path,
            feed_vars,
            fetch_targets,
            exe,
            program=inference_program,
            clip_extra=False)
        print(f"Saved model infered shape to {save_path}")

277
    def test_case2(self):
278
        predictor = TableLatencyPredictor(table_file='SD710')
Z
zhouzj 已提交
279 280
        model_file = 'test_mobilenetv2/inference.pdmodel'
        param_file = 'test_mobilenetv2/inference.pdiparams'
281 282
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
283 284
        assert latency > 0

285 286 287 288 289 290
        pbmodel_file = opt_model(
            model_file=model_file,
            param_file=param_file,
            optimize_out_type='protobuf')

        pred = LatencyPredictor()
291 292 293
        paddle.enable_static()
        with open(pbmodel_file, "rb") as f:
            fluid_program = paddle.fluid.framework.Program.parse_from_string(
294
                f.read())
295 296 297 298
            graph = paddleslim.core.GraphWrapper(fluid_program)
            graph_keys = pred._get_key_info_from_graph(graph=graph)
            assert len(graph_keys) > 0

Z
zhouzj 已提交
299 300 301 302 303 304
        self._infer_shape(
            model_dir='test_mobilenetv2',
            model_filename='inference.pdmodel',
            params_filename='inference.pdiparams',
            input_shapes=[1, 3, 250, 250],
            save_path='test_mobilenetv2_250')
305

Z
zhouzj 已提交
306 307
        model_file = 'test_mobilenetv2_250/infered_shape.pdmodel'
        param_file = 'test_mobilenetv2_250/infered_shape.pdiparams'
308 309
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
310 311
        assert latency > 0

Z
zhouzj 已提交
312 313 314 315 316 317
        self._infer_shape(
            model_dir='test_mobilenetv2_qat',
            model_filename='inference.pdmodel',
            params_filename='inference.pdiparams',
            input_shapes=[1, 3, 250, 250],
            save_path='test_mobilenetv2_qat_250')
318

Z
zhouzj 已提交
319 320 321 322 323 324 325 326 327
        model_file = 'test_mobilenetv2_qat_250/infered_shape.pdmodel'
        param_file = 'test_mobilenetv2_qat_250/infered_shape.pdiparams'
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='int8')
        assert latency > 0


class TestCase3(unittest.TestCase):
    def test_case3(self):
328
        paddle.disable_static()
Z
zhouzj 已提交
329
        model = ModelCase1()
Z
zhouzj 已提交
330
        model_file, param_file = save_cls_model(
331
            model,
Z
zhouzj 已提交
332
            input_shape=[1, 116, 28, 28],
333 334
            save_dir="./inference_model",
            data_type='fp32')
Z
zhouzj 已提交
335
        predictor = TableLatencyPredictor(table_file='SD710')
336 337
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
338 339 340
        assert latency > 0


Z
zhouzj 已提交
341 342
class TestCase4(unittest.TestCase):
    def test_case4(self):
343 344
        paddle.disable_static()
        model = ModelCase2()
345 346
        predictor = TableLatencyPredictor(table_file='SD710')
        model_file, param_file = save_det_model(
347 348
            model,
            input_shape=[1, 3, 224, 224],
349 350 351 352
            save_dir="./inference_model",
            data_type='fp32')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
353 354 355
        assert latency > 0


Z
zhouzj 已提交
356 357
class TestCase5(unittest.TestCase):
    def test_case5(self):
358 359
        paddle.disable_static()
        model = ModelCase3()
360 361
        predictor = TableLatencyPredictor(table_file='SD710')
        model_file, param_file = save_det_model(
362 363
            model,
            input_shape=[1, 3, 224, 224],
364
            save_dir="./inference_model",
365
            data_type='fp32',
366 367 368
            det_multi_input=True)
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
369 370 371
        assert latency > 0


Z
zhouzj 已提交
372 373
class TestCase6(unittest.TestCase):
    def test_case6(self):
374 375
        paddle.disable_static()
        model = ModelCase4()
376 377
        predictor = LatencyPredictor()
        model_file, param_file = save_cls_model(
378 379
            model,
            input_shape=[1, 3, 16, 16],
380 381 382 383 384 385 386
            save_dir="./inference_model",
            data_type='int8')
        pbmodel_file = opt_model(
            model_file=model_file,
            param_file=param_file,
            optimize_out_type='protobuf')

387 388 389
        paddle.enable_static()
        with open(pbmodel_file, "rb") as f:
            fluid_program = paddle.fluid.framework.Program.parse_from_string(
390
                f.read())
391 392 393 394 395
            graph = paddleslim.core.GraphWrapper(fluid_program)
            graph_keys = predictor._get_key_info_from_graph(graph=graph)
            assert len(graph_keys) > 0


Z
zhouzj 已提交
396 397
class TestCase7(unittest.TestCase):
    def test_case7(self):
398 399
        paddle.disable_static()
        model = ModelCase5()
400 401
        predictor = LatencyPredictor()
        model_file, param_file = save_det_model(
402 403
            model,
            input_shape=[1, 255, 13, 13],
404 405 406 407 408 409 410
            save_dir="./inference_model",
            data_type='fp32')
        pbmodel_file = opt_model(
            model_file=model_file,
            param_file=param_file,
            optimize_out_type='protobuf')

411 412 413
        paddle.enable_static()
        with open(pbmodel_file, "rb") as f:
            fluid_program = paddle.fluid.framework.Program.parse_from_string(
414
                f.read())
415 416 417 418 419
            graph = paddleslim.core.GraphWrapper(fluid_program)
            graph_keys = predictor._get_key_info_from_graph(graph=graph)
            assert len(graph_keys) > 0


Z
zhouzj 已提交
420 421
class TestCase8(unittest.TestCase):
    def test_case8(self):
422 423
        paddle.disable_static()
        predictor = TableLatencyPredictor(table_file='SD710')
Z
zhouzj 已提交
424
        model = ModelCase6()
425 426 427 428 429 430 431 432 433
        model_file, param_file = save_cls_model(
            model,
            input_shape=[1, 3, 16, 16],
            save_dir="./inference_model",
            data_type='fp32')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
        assert latency > 0

Z
zhouzj 已提交
434 435
        paddle.disable_static()
        model2 = ModelCase7()
436
        model_file, param_file = save_det_model(
Z
zhouzj 已提交
437
            model2,
438 439 440 441 442 443 444 445
            input_shape=[1, 255, 14, 14],
            save_dir="./inference_model",
            data_type='fp32')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
        assert latency > 0


446 447
if __name__ == '__main__':
    unittest.main()