test_latency_predictor.py 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys, os
sys.path.append("../")
import unittest
import paddle
import paddleslim
from paddleslim.analysis import LatencyPredictor, TableLatencyPredictor
from paddle.vision.models import mobilenet_v1, mobilenet_v2
from paddle.nn import Conv2D, BatchNorm2D, ReLU, LayerNorm
22
from paddleslim.analysis._utils import opt_model, save_cls_model, save_seg_model, save_det_model
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100


def channel_shuffle(x, groups):
    batch_size, num_channels, height, width = x.shape[0:4]
    channels_per_group = num_channels // groups

    x = paddle.reshape(
        x=x, shape=[batch_size, groups, channels_per_group, height, width])

    x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4])

    x = paddle.reshape(x=x, shape=[batch_size, num_channels, height, width])
    return x


class ModelCase1(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase1, self).__init__()
        self.conv1 = Conv2D(58, 58, 1)
        self.conv2 = Conv2D(58, 58, 1)

    def forward(self, inputs):
        x1, x2 = paddle.split(
            inputs,
            num_or_sections=[inputs.shape[1] // 2, inputs.shape[1] // 2],
            axis=1)
        x1 = self.conv1(x1)
        x2 = self.conv2(x2)
        out = paddle.concat([x1, x2], axis=1)
        return channel_shuffle(out, 2)


class ModelCase2(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase2, self).__init__()
        self.conv1 = Conv2D(3, 24, 3, stride=2, padding=1)

    def forward(self, inputs):
        image = inputs['image']

        return self.conv1(image)


class ModelCase3(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase3, self).__init__()
        self.conv1 = Conv2D(3, 24, 3, stride=2, padding=1)

    def forward(self, inputs):
        image = inputs['image']
        im_shape = inputs['im_shape']
        scale_factor = inputs['scale_factor']

        return self.conv1(image), im_shape, scale_factor


class ModelCase4(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase4, self).__init__()
        self.bn1 = BatchNorm2D(3)
        self.ln1 = LayerNorm([3 * 16 * 16])
        self.relu1 = ReLU()
        self.fc1 = paddle.nn.Linear(3 * 16 * 16, 3 * 16 * 16)

    def forward(self, inputs):
        x = self.bn1(inputs)
        x = paddle.reshape(x, [1, 3 * 16 * 16])
        x = self.ln1(x)
        x = self.fc1(x)
        x = paddle.fluid.layers.unsqueeze(input=x, axes=[2])
        x = self.relu1(x)
        y = paddle.fluid.layers.fill_constant(
            x.shape, dtype=paddle.float32, value=1)
        x = paddle.stack([x, y], axis=3)
        x = paddle.slice(x, axes=[0], starts=[0], ends=[1])
        x = paddle.exp(x)
        y += paddle.fluid.layers.uniform_random(y.shape)
        y = paddle.fluid.layers.reduce_mean(y, dim=1, keep_dim=True)
101
        return paddle.greater_equal(x, y)
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135


class ModelCase5(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase5, self).__init__()
        self.bn1 = BatchNorm2D(255)

    def forward(self, inputs):
        image = inputs['image']
        image = self.bn1(image)
        img_size = paddle.fluid.data(
            name='img_size', shape=[None, 2], dtype='int64')
        anchors = [10, 13, 16, 30, 33, 23]
        boxes, scores = paddle.fluid.layers.yolo_box(
            x=image,
            img_size=img_size,
            class_num=80,
            anchors=anchors,
            conf_thresh=0.01,
            downsample_ratio=32)
        out = paddle.fluid.layers.matrix_nms(
            bboxes=boxes,
            scores=scores,
            background_label=0,
            score_threshold=0.5,
            post_threshold=0.1,
            nms_top_k=400,
            keep_top_k=200,
            normalized=False)
        box, var = paddle.fluid.layers.prior_box(
            input=image, image=image, min_sizes=[2.], clip=True, flip=True)
        return boxes, scores, box, var, out


136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
class ModelCase6(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase6, self).__init__()
        self.bn1 = BatchNorm2D(3)
        self.relu1 = ReLU()
        self.fc1 = paddle.nn.Linear(3 * 16 * 16, 3 * 16 * 16)
        self.dp = paddle.nn.Dropout(p=0.5)

    def forward(self, inputs):
        x = self.bn1(inputs)
        x = paddle.reshape(x, [1, 3 * 16 * 16])
        x = self.fc1(x)
        x = paddle.fluid.layers.unsqueeze(input=x, axes=[2])
        x = self.relu1(x)
        y = paddle.fluid.layers.fill_constant(
            x.shape, dtype=paddle.float32, value=1)
        x = paddle.stack([x, y], axis=3)
        x = paddle.slice(x, axes=[0], starts=[0], ends=[1])
        x = paddle.exp(x)
        y += paddle.fluid.layers.uniform_random(y.shape)
        y = paddle.expand(y, shape=[1, 768, 768, 2])
        x = paddle.expand(x, shape=[1, 768, 768, 2])
        out = paddle.concat([x, y])
        out = self.dp(out)
        out = channel_shuffle(out, 2)
        out1, out2 = paddle.split(out, num_or_sections=2, axis=1)
        return out1, out2


class ModelCase7(paddle.nn.Layer):
    def __init__(self):
        super(ModelCase7, self).__init__()
        self.bn1 = BatchNorm2D(255)

    def forward(self, inputs):
        image = inputs['image']
        image = self.bn1(image)
        img_size = paddle.fluid.data(
            name='img_size', shape=[None, 2], dtype='int64')
        anchors = [10, 13, 16, 30, 33, 23]
        boxes, scores = paddle.fluid.layers.yolo_box(
            x=image,
            img_size=img_size,
            class_num=80,
            anchors=anchors,
            conf_thresh=0.01,
            downsample_ratio=32)
        box, var = paddle.fluid.layers.prior_box(
            input=image, image=image, min_sizes=[2.], clip=True, flip=True)
        return boxes, scores, box, var


188 189 190 191
class TestCase1(unittest.TestCase):
    def test_case1(self):
        paddle.disable_static()
        model = mobilenet_v1()
192 193
        predictor = TableLatencyPredictor(table_file='SD710')
        model_file, param_file = save_cls_model(
194 195
            model,
            input_shape=[1, 3, 224, 224],
196 197 198 199 200 201
            save_dir="./inference_model",
            data_type='fp32')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')

        model_file, param_file = save_cls_model(
202 203
            model,
            input_shape=[1, 3, 224, 224],
204 205 206 207
            save_dir="./inference_model",
            data_type='int8')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='int8')
208 209 210 211 212 213 214
        assert latency > 0


class TestCase2(unittest.TestCase):
    def test_case2(self):
        paddle.disable_static()
        model = mobilenet_v2()
215 216
        predictor = TableLatencyPredictor(table_file='SD710')
        model_file, param_file = save_cls_model(
217 218
            model,
            input_shape=[1, 3, 224, 224],
219 220 221 222
            save_dir="./inference_model",
            data_type='fp32')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
223 224 225 226 227 228 229
        assert latency > 0


class TestCase3(unittest.TestCase):
    def test_case3(self):
        paddle.disable_static()
        model = mobilenet_v2()
230
        model_file, param_file = save_cls_model(
231 232
            model,
            input_shape=[1, 3, 224, 224],
233 234 235 236 237 238 239 240
            save_dir="./inference_model",
            data_type='fp32')
        pbmodel_file = opt_model(
            model_file=model_file,
            param_file=param_file,
            optimize_out_type='protobuf')

        pred = LatencyPredictor()
241 242 243
        paddle.enable_static()
        with open(pbmodel_file, "rb") as f:
            fluid_program = paddle.fluid.framework.Program.parse_from_string(
244
                f.read())
245 246 247 248 249 250 251 252 253
            graph = paddleslim.core.GraphWrapper(fluid_program)
            graph_keys = pred._get_key_info_from_graph(graph=graph)
            assert len(graph_keys) > 0


class TestCase4(unittest.TestCase):
    def test_case4(self):
        paddle.disable_static()
        model = ModelCase1()
254
        model_file, param_file = save_cls_model(
255 256
            model,
            input_shape=[1, 116, 28, 28],
257 258 259 260 261
            save_dir="./inference_model",
            data_type='fp32')
        predictor = TableLatencyPredictor(table_file='SD710')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
262 263 264 265 266 267 268
        assert latency > 0


class TestCase5(unittest.TestCase):
    def test_case5(self):
        paddle.disable_static()
        model = mobilenet_v1()
269 270
        predictor = TableLatencyPredictor(table_file='SD710')
        model_file, param_file = save_seg_model(
271 272
            model,
            input_shape=[1, 3, 224, 224],
273 274 275 276
            save_dir="./inference_model",
            data_type='fp32')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
277 278 279 280 281 282 283
        assert latency > 0


class TestCase6(unittest.TestCase):
    def test_case6(self):
        paddle.disable_static()
        model = ModelCase2()
284 285
        predictor = TableLatencyPredictor(table_file='SD710')
        model_file, param_file = save_det_model(
286 287
            model,
            input_shape=[1, 3, 224, 224],
288 289 290 291
            save_dir="./inference_model",
            data_type='fp32')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
292 293 294 295 296 297 298
        assert latency > 0


class TestCase7(unittest.TestCase):
    def test_case7(self):
        paddle.disable_static()
        model = ModelCase3()
299 300
        predictor = TableLatencyPredictor(table_file='SD710')
        model_file, param_file = save_det_model(
301 302
            model,
            input_shape=[1, 3, 224, 224],
303
            save_dir="./inference_model",
304
            data_type='fp32',
305 306 307
            det_multi_input=True)
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
308 309 310 311 312 313 314
        assert latency > 0


class TestCase8(unittest.TestCase):
    def test_case8(self):
        paddle.disable_static()
        model = ModelCase4()
315 316
        predictor = LatencyPredictor()
        model_file, param_file = save_cls_model(
317 318
            model,
            input_shape=[1, 3, 16, 16],
319 320 321 322 323 324 325
            save_dir="./inference_model",
            data_type='int8')
        pbmodel_file = opt_model(
            model_file=model_file,
            param_file=param_file,
            optimize_out_type='protobuf')

326 327 328
        paddle.enable_static()
        with open(pbmodel_file, "rb") as f:
            fluid_program = paddle.fluid.framework.Program.parse_from_string(
329
                f.read())
330 331 332 333 334 335 336 337 338
            graph = paddleslim.core.GraphWrapper(fluid_program)
            graph_keys = predictor._get_key_info_from_graph(graph=graph)
            assert len(graph_keys) > 0


class TestCase9(unittest.TestCase):
    def test_case9(self):
        paddle.disable_static()
        model = ModelCase5()
339 340
        predictor = LatencyPredictor()
        model_file, param_file = save_det_model(
341 342
            model,
            input_shape=[1, 255, 13, 13],
343 344 345 346 347 348 349
            save_dir="./inference_model",
            data_type='fp32')
        pbmodel_file = opt_model(
            model_file=model_file,
            param_file=param_file,
            optimize_out_type='protobuf')

350 351 352
        paddle.enable_static()
        with open(pbmodel_file, "rb") as f:
            fluid_program = paddle.fluid.framework.Program.parse_from_string(
353
                f.read())
354 355 356 357 358 359 360 361 362
            graph = paddleslim.core.GraphWrapper(fluid_program)
            graph_keys = predictor._get_key_info_from_graph(graph=graph)
            assert len(graph_keys) > 0


class TestCase10(unittest.TestCase):
    def test_case10(self):
        paddle.disable_static()
        model = ModelCase1()
363 364
        predictor = LatencyPredictor()
        model_file, param_file = save_seg_model(
365 366
            model,
            input_shape=[1, 116, 28, 28],
367 368 369 370 371 372 373
            save_dir="./inference_model",
            data_type='int8')
        pbmodel_file = opt_model(
            model_file=model_file,
            param_file=param_file,
            optimize_out_type='protobuf')

374 375 376
        paddle.enable_static()
        with open(pbmodel_file, "rb") as f:
            fluid_program = paddle.fluid.framework.Program.parse_from_string(
377
                f.read())
378 379 380 381 382
            graph = paddleslim.core.GraphWrapper(fluid_program)
            graph_keys = predictor._get_key_info_from_graph(graph=graph)
            assert len(graph_keys) > 0


383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
class TestCase11(unittest.TestCase):
    def test_case11(self):
        paddle.disable_static()
        model = mobilenet_v2()
        model2 = ModelCase6()
        model3 = ModelCase7()
        predictor = TableLatencyPredictor(table_file='SD710')
        model_file, param_file = save_cls_model(
            model,
            input_shape=[1, 3, 250, 250],
            save_dir="./inference_model",
            data_type='fp32')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
        assert latency > 0

        model_file, param_file = save_cls_model(
            model,
            input_shape=[1, 3, 250, 250],
            save_dir="./inference_model",
            data_type='int8')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='int8')
        assert latency > 0

        model_file, param_file = save_cls_model(
            model2,
            input_shape=[1, 3, 16, 16],
            save_dir="./inference_model",
            data_type='fp32')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
        assert latency > 0

        model_file, param_file = save_det_model(
            model3,
            input_shape=[1, 255, 14, 14],
            save_dir="./inference_model",
            data_type='fp32')
        latency = predictor.predict(
            model_file=model_file, param_file=param_file, data_type='fp32')
        assert latency > 0


427 428
if __name__ == '__main__':
    unittest.main()