test_prune.py 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle.fluid as fluid
18
from paddleslim.prune import Pruner
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
from layers import conv_bn_layer


class TestPrune(unittest.TestCase):
    def test_prune(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        #   X       X              O       X              O
        # conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
        #     |            ^ |                    ^
        #     |____________| |____________________|
        #
        # X: prune output channels
        # O: prune input channels
        with fluid.program_guard(main_program, startup_program):
            input = fluid.data(name="image", shape=[None, 3, 16, 16])
            conv1 = conv_bn_layer(input, 8, 3, "conv1")
            conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
            sum1 = conv1 + conv2
            conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
            conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
            sum2 = conv4 + sum1
            conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
            conv6 = conv_bn_layer(conv5, 8, 3, "conv6")

44 45 46
            conv7 = fluid.layers.conv2d_transpose(
                input=conv6, num_filters=16, filter_size=2, stride=2)

47 48 49 50 51 52 53 54 55
        shapes = {}
        for param in main_program.global_block().all_parameters():
            shapes[param.name] = param.shape

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        exe.run(startup_program, scope=scope)
        pruner = Pruner()
W
wanghaoshuang 已提交
56
        main_program, _, _ = pruner.prune(
57 58
            main_program,
            scope,
59 60
            params=["conv4_weights", "conv2d_transpose_0.w_0"],
            ratios=[0.5, 0.6],
61 62 63 64 65 66 67
            place=place,
            lazy=False,
            only_graph=False,
            param_backup=None,
            param_shape_backup=None)

        shapes = {
W
whs 已提交
68 69 70 71 72
            "conv1_weights": (4, 3, 3, 3),
            "conv2_weights": (4, 4, 3, 3),
            "conv3_weights": (8, 4, 3, 3),
            "conv4_weights": (4, 8, 3, 3),
            "conv5_weights": (8, 4, 3, 3),
73 74
            "conv6_weights": (8, 8, 3, 3),
            "conv2d_transpose_0.w_0": (8, 16, 2, 2),
75 76 77
        }

        for param in main_program.global_block().all_parameters():
78
            if param.name in shapes:
79 80
                print("param: {}; param shape: {}".format(param.name,
                                                          param.shape))
81 82 83 84 85
                self.assertTrue(param.shape == shapes[param.name])


if __name__ == '__main__':
    unittest.main()