smooth.py 12.8 KB
Newer Older
C
Chang Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
# Copyright (c) 2023  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
from .utils import get_ln_linear_info, find_parent_layer_and_sub_name
from .utils_layers import ShiftSmoothHelpLayer, WOBiasHelpLayer
__all__ = ['Smooth']


class Smooth():
    def __init__(
            self,
            model,
            model_config,
            alpha=0.5,
            smooth_all_linears=False,
            sample_function=None,
            search_function=None, ):
        '''
        Smooth is an updated version of SmoothQuant(https://arxiv.org/abs/2211.10438). 
        Compared with SmoothQuant, the piecewise smooth algorithm has the following updates:
        It supports the search functions to search best smooth scale.
        It supports the sample function to sample smooth scale.
        Currently, Smooth only supports linear layer and ColumnParallelLinear/RowParallelLinear layer.

        
        Args:
            model(paddle.nn.Layer, required): the model to be smoothed 
            model_config (dict, required): the config of model to be smoothed 
            alpha(float, optional): smoothing parameter. Default: 0.5
            smooth_all_linears(bool, optional): whether to smooth all linears. Default: False
            sample_function(function, optional): the function of sample to sample data. Default: None
            sample_start_step(int, optional): the step of sample data by using sample_function. Default: 0
            search_function(function, optional): the function of search smooth scale. Default: None
            
        Examples:
        .. code-block:: python
       
        from paddleslim.quant.advanced import Smooth
        smooth = Smooth(model)
        for data in dataloader():
            model(data)
            smooth.step += 1
        smooth.update_weight()
        '''
        self.model = model
        self.model_config = model_config
        self.fused_qkv = model_config.get("fused_qkv", True)
        self.linear_flag = model_config.get("linear_flag", 'linear')
        self.norm_flag = model_config.get("norm_flag", 'norm')
        self.parallel_ffn = model_config.get("parallel_ffn", False)
        self.skip_norm_list = model_config.get("skip_norm_list", [])
C
Chang Xu 已提交
65
        self.skip_linear_list = model_config.get("skip_linear_list", [])
C
Chang Xu 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

        self.alpha = alpha
        self.smooth_all_linears = smooth_all_linears
        self.sample_function = sample_function
        self.search_function = search_function

        self.model.eval()
        self.step = 0
        self.print_step = 1
        self.got_smooth_layers = False
        self.help_layers_ready = False
        self.layer_order = []
        self.scale_dict = {}
        self.smooth_scale_dict = {}
        self.sampled_inputs = {}
        self._apply_hook()

    def _apply_hook(self):
        self._forward_hook_list = []
        for _, sub_layer in self.model.named_sublayers():
            if self.norm_flag in sub_layer.full_name(
            ) or self.linear_flag in sub_layer.full_name():
                forward_pre_hook_handle = sub_layer.register_forward_pre_hook(
                    self._forward_pre_hook)
                self._forward_hook_list.append(forward_pre_hook_handle)
            if type(sub_layer) == ShiftSmoothHelpLayer:
                self.help_layers_ready = True
                forward_pre_hook_handle = sub_layer.register_forward_pre_hook(
                    self._forward_pre_hook)
                self._forward_hook_list.append(forward_pre_hook_handle)

    def _get_smooth_layers(self):
        self.ln_linear_dict, self.linear_ln_dict = get_ln_linear_info(
            self.layer_order, self.norm_flag, self.linear_flag, self.fused_qkv,
            self.parallel_ffn, self.skip_norm_list)
C
Chang Xu 已提交
101

C
Chang Xu 已提交
102 103 104 105 106 107 108 109 110
        assert len(self.ln_linear_dict) > 0, 'No LN/Linear pair found'
        for key in self.ln_linear_dict:
            print('smooth pair LN {} : Linear {}'.format(
                key, self.ln_linear_dict[key]))
        if self.smooth_all_linears:
            if not self.help_layers_ready:
                rest_linears = [
                    l for l in self.layer_order
                    if self.linear_flag in l and l not in self.linear_ln_dict
C
Chang Xu 已提交
111
                    and l not in self.skip_linear_list
C
Chang Xu 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
                ]
                print('Preparing smooth layers', rest_linears)
                for cur_name, sub_layer in self.model.named_sublayers():
                    if sub_layer.full_name() in rest_linears:
                        new_layer = ShiftSmoothHelpLayer(sub_layer)
                        parent_layer, sub_name = find_parent_layer_and_sub_name(
                            self.model, cur_name)
                        setattr(parent_layer, sub_name, new_layer)
                        forward_pre_hook_handle = new_layer.register_forward_pre_hook(
                            self._forward_pre_hook)
                        self._forward_hook_list.append(forward_pre_hook_handle)

        self.got_smooth_layers = True

    def _forward_pre_hook(self, layer, input):
        '''
        when step 0, forward once and collect smooth layers.
        '''
        if self.step == 0 and layer.full_name() in self.layer_order:
            self.step += 1
        if self.step == 0:
            self.layer_order.append(layer.full_name())
            return input
        if self.step == 1:
            if not self.got_smooth_layers:
                self._get_smooth_layers()
        if self.step > 0:
            if layer.full_name() in self.linear_ln_dict.keys():
                self._sample_scale(input,
                                   self.linear_ln_dict[layer.full_name()])
            if type(layer) == ShiftSmoothHelpLayer:
                self._sample_scale(input, layer.full_name())

        return input

    def _sample_scale(self, input, ln_name):
        x = input[0] if type(input) == tuple else input
        x.stop_gradient = True
        x_abs_max = x.abs().max(axis=1, keepdim=True)
        x_abs_max = x_abs_max.max(axis=0)

        if ln_name not in self.scale_dict:
            self.sampled_inputs[ln_name] = x
            self.scale_dict[ln_name] = x_abs_max
        else:
            if self.sample_function is not None:
                self.sampled_inputs[ln_name] = self.sample_function.sample(
                    x, self.sampled_inputs[ln_name], ln_name)
            else:
                self.sampled_inputs[ln_name] = x
            tmp1 = paddle.concat([x_abs_max, self.scale_dict[ln_name]], axis=0)
            self.scale_dict[ln_name] = tmp1.max(axis=0, keepdim=True)

        # per step print once
        if self.print_step == self.step:
            print('[Smooth] Step [{}]: {}. abs_min: {}, abs_max: {}'.format(
                self.step, ln_name,
                float(self.scale_dict[ln_name].cast("float32").min()),
                float(self.scale_dict[ln_name].cast("float32").max())))
            if ln_name == list(self.linear_ln_dict.values())[-1]:
                self.print_step += 1

    def update_weight(self):

        for _, sub_layer in self.model.named_sublayers():
            layer_name = sub_layer.full_name()
            ln_name = None
            if layer_name in self.linear_ln_dict:
                ln_name = self.linear_ln_dict[layer_name]
            if type(sub_layer) == ShiftSmoothHelpLayer:
                ln_name = layer_name
            if ln_name is not None:
                act_abs_max = self.scale_dict[ln_name].cast("float32")
                sampled_input = self.sampled_inputs[ln_name].cast("float32")
                for param in sub_layer.parameters(include_sublayers=False):
                    if 'w_0' in param.name:
                        weight = param.cast("float32")
                        if self.search_function is not None:
                            s = self.search_function.search(
                                layer_name, sampled_input, act_abs_max, weight)
                        else:
                            w_abs_max = weight.abs().max(axis=-1, keepdim=True)
                            rw_abs_max = w_abs_max.reshape(act_abs_max.shape)
                            act_abs_max_np = act_abs_max.numpy()
                            weight_abs_max_np = rw_abs_max.numpy()
                            s = (
                                np.power(act_abs_max_np, self.alpha) / np.power(
                                    weight_abs_max_np, 1 - self.alpha)).clip(
                                        min=1e-5)
                            s = paddle.to_tensor(s, dtype="float32")

                        self.smooth_scale_dict[ln_name] = s.cast(param.dtype)
                        break

        # update linear weight
        for _, sub_layer in self.model.named_sublayers():
            layer_name = sub_layer.full_name()
            if layer_name in self.linear_ln_dict:
                for param in sub_layer.parameters(include_sublayers=False):
                    if 'w_0' in param.name:
                        ln_name = self.linear_ln_dict[layer_name]
                        print("[smooth] before linear [{}] weight, abs_max: {}".
                              format(param.name,
                                     float(param.cast("float32").abs().max())))
                        param_tmp = param * self.smooth_scale_dict[
                            ln_name].transpose(perm=[1, 0])
                        paddle.assign(param_tmp, output=param)
                        print("[smooth] after linear [{}] weight, abs_max: {}".
                              format(param.name,
                                     float(param_tmp.abs().max().cast(
                                         "float32"))))

        # update LN weight
        for cur_name, sub_layer in self.model.named_sublayers():
            layer_name = sub_layer.full_name()
            if layer_name in self.ln_linear_dict:
                s = self.smooth_scale_dict[layer_name].squeeze()
                for param in sub_layer.parameters(include_sublayers=False):
                    print("[smooth] before layer_norm {} weight, abs_max: {}".
                          format(param.name,
                                 float(param.abs().max().cast("float32"))))
                    param_tmp = param / s
                    paddle.assign(param_tmp, output=param)
                    print("[smooth] after layer_norm {} weight, abs_max: {}".
                          format(param.name,
                                 float(param_tmp.abs().max().cast("float32"))))
                if not hasattr(sub_layer, "bias") or sub_layer.bias is None:
                    parent_layer, _ = find_parent_layer_and_sub_name(
                        self.model, cur_name)
                    if type(parent_layer) == WOBiasHelpLayer:
                        param = parent_layer.bias
                        print(
                            "[smooth WOBiasHelpLayer] before layer_norm {} bias, abs_max: {}".
                            format(param.name,
                                   float(param.abs().max().cast("float32"))))
                        param_tmp = param / s
                        paddle.assign(param_tmp, output=param)
                        print(
                            "[smooth WOBiasHelpLayer] after layer_norm {} bias, abs_max: {}".
                            format(param.name,
                                   float(param_tmp.abs().max().cast(
                                       "float32"))))

        for _, sub_layer in self.model.named_sublayers():
            if type(sub_layer) == ShiftSmoothHelpLayer:
                layer_name = sub_layer.full_name()
                linear_name = sub_layer.layer.full_name()
                smooth_scale = self.smooth_scale_dict[layer_name]
                print(
                    "[smooth ShiftSmoothHelpLayer] param: {}, before weight, abs_max: {}".
                    format(linear_name,
                           float(sub_layer.weight.abs().max().cast("float32"))))
                sub_layer.convert_weight(smooth_weight=smooth_scale)
                print(
                    "[smooth ShiftSmoothHelpLayer] param: {}, after weight, abs_max: {}".
                    format(linear_name,
                           float(sub_layer.weight.abs().max().cast("float32"))))

        self._remove_hook()
        paddle.device.cuda.empty_cache()

    def _remove_hook(self):
        for hook in self._forward_hook_list:
            hook.remove()
        self._forward_hook_list = []