Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
73e15291
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 1 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
73e15291
编写于
8月 23, 2023
作者:
C
Chang Xu
提交者:
GitHub
8月 23, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Skip linear in smooth (#1791)
上级
e9011d3e
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
17 addition
and
16 deletion
+17
-16
paddleslim/quant/advanced/shift.py
paddleslim/quant/advanced/shift.py
+13
-14
paddleslim/quant/advanced/smooth.py
paddleslim/quant/advanced/smooth.py
+3
-0
paddleslim/quant/observers/abs_max_weight.py
paddleslim/quant/observers/abs_max_weight.py
+1
-2
未找到文件。
paddleslim/quant/advanced/shift.py
浏览文件 @
73e15291
...
...
@@ -55,13 +55,13 @@ class Shift():
self
.
norm_flag
=
model_config
.
get
(
"norm_flag"
,
'norm'
)
self
.
parallel_ffn
=
model_config
.
get
(
"parallel_ffn"
,
False
)
self
.
skip_norm_list
=
model_config
.
get
(
"skip_norm_list"
,
[])
self
.
skip_linear_list
=
model_config
.
get
(
"skip_linear_list"
,
[])
self
.
shift_all_linears
=
shift_all_linears
self
.
sample_function
=
sample_function
self
.
layer_order
=
[]
self
.
zero_point_dict
=
{}
self
.
smooth_scale_dict
=
{}
self
.
glabal_min_max
=
{}
self
.
model
.
eval
()
self
.
step
=
0
...
...
@@ -88,6 +88,7 @@ class Shift():
self
.
ln_linear_dict
,
self
.
linear_ln_dict
=
get_ln_linear_info
(
self
.
layer_order
,
self
.
norm_flag
,
self
.
linear_flag
,
self
.
fused_qkv
,
self
.
parallel_ffn
,
self
.
skip_norm_list
)
assert
len
(
self
.
ln_linear_dict
)
>
0
,
'No LN/Linear pair found'
for
key
in
self
.
ln_linear_dict
:
print
(
'shift pair LN {} : Linear {}'
.
format
(
...
...
@@ -97,6 +98,7 @@ class Shift():
rest_linears
=
[
l
for
l
in
self
.
layer_order
if
self
.
linear_flag
in
l
and
l
not
in
self
.
linear_ln_dict
and
l
not
in
self
.
skip_linear_list
]
print
(
'Preparing shift layers'
,
rest_linears
)
for
cur_name
,
sub_layer
in
self
.
model
.
named_sublayers
():
...
...
@@ -108,6 +110,7 @@ class Shift():
forward_pre_hook_handle
=
new_layer
.
register_forward_pre_hook
(
self
.
_forward_pre_hook
)
self
.
_forward_hook_list
.
append
(
forward_pre_hook_handle
)
self
.
got_shift_layers
=
True
def
_forward_pre_hook
(
self
,
layer
,
input
):
...
...
@@ -134,17 +137,15 @@ class Shift():
def
_sample_zero_point
(
self
,
input
,
ln_name
):
x
=
input
[
0
]
if
type
(
input
)
==
tuple
else
input
x
=
x
.
cast
(
'float32'
)
x
.
stop_gradient
=
True
zero_point
=
x
.
mean
(
axis
=
(
0
,
1
))
if
len
(
x
.
shape
)
>
2
else
x
.
mean
(
axis
=
1
)
_min
=
x
.
min
(
axis
=
(
0
,
1
))
if
len
(
x
.
shape
)
>
2
else
x
.
min
(
axis
=
1
)
_max
=
x
.
max
(
axis
=
(
0
,
1
))
if
len
(
x
.
shape
)
>
2
else
x
.
max
(
axis
=
1
)
if
ln_name
not
in
self
.
zero_point_dict
or
ln_name
not
in
self
.
glabal_min_max
:
if
ln_name
not
in
self
.
zero_point_dict
:
if
self
.
sample_function
is
None
:
self
.
glabal_min_max
[
ln_name
]
=
_min
,
_max
self
.
zero_point_dict
[
ln_name
]
=
(
_min
+
_max
)
/
2
else
:
self
.
zero_point_dict
[
ln_name
]
=
zero_point
...
...
@@ -154,11 +155,9 @@ class Shift():
self
.
zero_point_dict
[
ln_name
]
=
self
.
sample_function
.
sample
(
zero_point
,
self
.
zero_point_dict
[
ln_name
],
ln_name
)
else
:
global_min
,
global_max
=
self
.
glabal_min_max
[
ln_name
]
global_min
=
global_min
if
global_min
<
_min
else
_min
global_max
=
global_max
if
global_max
>
_max
else
_max
self
.
glabal_min_max
[
ln_name
]
=
global_min
,
global_max
self
.
zero_point_dict
[
ln_name
]
=
(
global_min
+
global_max
)
/
2
cur_zero_point
=
(
_min
+
_max
)
/
2
self
.
zero_point_dict
[
ln_name
]
=
(
self
.
zero_point_dict
[
ln_name
]
+
cur_zero_point
)
/
2
# per step print once
if
self
.
print_step
==
self
.
step
:
...
...
@@ -183,13 +182,13 @@ class Shift():
shift_bias
=
None
for
param
in
sub_layer
.
parameters
(
include_sublayers
=
False
):
if
'w_0'
in
param
.
name
:
zero_point
=
self
.
zero_point_dict
[
ln_name
].
squeeze
()
shift_bias
=
paddle
.
matmul
(
zero_point
,
param
.
cast
(
'float32'
)
)
zero_point
=
self
.
zero_point_dict
[
ln_name
].
squeeze
().
cast
(
param
.
dtype
)
shift_bias
=
paddle
.
matmul
(
zero_point
,
param
)
print
(
"[shift] param: {}, zero_point min: {}, max: {}"
.
format
(
param
.
name
,
float
(
zero_point
.
min
()),
float
(
zero_point
.
max
())))
float
(
zero_point
.
cast
(
"float32"
).
min
()),
float
(
zero_point
.
cast
(
"float32"
).
max
())))
break
if
not
hasattr
(
sub_layer
,
"bias"
)
or
sub_layer
.
bias
is
None
:
...
...
paddleslim/quant/advanced/smooth.py
浏览文件 @
73e15291
...
...
@@ -62,6 +62,7 @@ class Smooth():
self
.
norm_flag
=
model_config
.
get
(
"norm_flag"
,
'norm'
)
self
.
parallel_ffn
=
model_config
.
get
(
"parallel_ffn"
,
False
)
self
.
skip_norm_list
=
model_config
.
get
(
"skip_norm_list"
,
[])
self
.
skip_linear_list
=
model_config
.
get
(
"skip_linear_list"
,
[])
self
.
alpha
=
alpha
self
.
smooth_all_linears
=
smooth_all_linears
...
...
@@ -97,6 +98,7 @@ class Smooth():
self
.
ln_linear_dict
,
self
.
linear_ln_dict
=
get_ln_linear_info
(
self
.
layer_order
,
self
.
norm_flag
,
self
.
linear_flag
,
self
.
fused_qkv
,
self
.
parallel_ffn
,
self
.
skip_norm_list
)
assert
len
(
self
.
ln_linear_dict
)
>
0
,
'No LN/Linear pair found'
for
key
in
self
.
ln_linear_dict
:
print
(
'smooth pair LN {} : Linear {}'
.
format
(
...
...
@@ -106,6 +108,7 @@ class Smooth():
rest_linears
=
[
l
for
l
in
self
.
layer_order
if
self
.
linear_flag
in
l
and
l
not
in
self
.
linear_ln_dict
and
l
not
in
self
.
skip_linear_list
]
print
(
'Preparing smooth layers'
,
rest_linears
)
for
cur_name
,
sub_layer
in
self
.
model
.
named_sublayers
():
...
...
paddleslim/quant/observers/abs_max_weight.py
浏览文件 @
73e15291
...
...
@@ -65,8 +65,7 @@ class AbsMaxChannelWiseWeightObserverLayer(ChannelWiseObserver):
def
_cal_abs_max
(
self
,
inputs
):
reduce_axis
=
tuple
(
[
i
for
i
in
range
(
len
(
inputs
.
shape
))
if
i
!=
self
.
quant_axis
()])
abs_max_values
=
paddle
.
max
(
paddle
.
abs
(
inputs
),
axis
=
reduce_axis
).
cast
(
"float32"
)
abs_max_values
=
paddle
.
max
(
paddle
.
abs
(
inputs
),
axis
=
reduce_axis
)
abs_max_values
=
paddle
.
where
(
abs_max_values
==
paddle
.
to_tensor
(
0
,
dtype
=
inputs
.
dtype
),
paddle
.
to_tensor
(
1e-8
,
dtype
=
inputs
.
dtype
),
abs_max_values
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录