model_zoo.md 26.7 KB
Newer Older
W
whs 已提交
1 2
# 模型库

3
## 1. 图像分类
B
Bai Yifan 已提交
4 5 6 7 8

数据集:ImageNet1000类

### 1.1 量化

9 10 11 12 13 14 15 16 17 18
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | TensorRT时延(V100, ms) | 下载 |
|:--:|:---:|:--:|:--:|:--:|:--:|
|MobileNetV1|-|70.99%/89.68%| 17 | -| [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|MobileNetV1|quant_post|70.18%/89.25% (-0.81%/-0.43%)| 4.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_post.tar) |
|MobileNetV1|quant_aware|70.60%/89.57% (-0.39%/-0.11%)| 4.4 | -| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_aware.tar) |
| MobileNetV2 | - |72.15%/90.65%| 15 | - | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | quant_post | 71.15%/90.11% (-1%/-0.54%)| 4.0   | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_post.tar) |
| MobileNetV2 | quant_aware |72.05%/90.63% (-0.1%/-0.02%)| 4.0 | - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_aware.tar) |
|ResNet50|-|76.50%/93.00%| 99 | 2.71 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet50|quant_post|76.33%/93.02% (-0.17%/+0.02%)| 25.1| 1.19 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_post.tar) |
C
ceci3 已提交
19
|ResNet50|quant_aware|    76.48%/93.11% (-0.02%/+0.11%)| 25.1 | 1.17 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_awre.tar) |
20

B
Bai Yifan 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
分类模型Lite时延(ms)

| 设备    | 模型类型    | 压缩策略      | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------- | ----------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| 高通835 | MobileNetV1 | FP32 baseline | 96.1942        | 53.2058        | 32.4468        | 88.4955        | 47.95          | 27.5189        |
| 高通835 | MobileNetV1 | quant_aware   | 60.8186        | 32.1931        | 16.4275        | 56.4311        | 29.5446        | 15.1053        |
| 高通835 | MobileNetV1 | quant_post    | 60.5615        | 32.4016        | 16.6596        | 56.5266        | 29.7178        | 15.1459        |
| 高通835 | MobileNetV2 | FP32 baseline | 65.715         | 38.1346        | 25.155         | 61.3593        | 36.2038        | 22.849         |
| 高通835 | MobileNetV2 | quant_aware   | 48.3655        | 30.2021        | 21.9303        | 46.1487        | 27.3146        | 18.3053        |
| 高通835 | MobileNetV2 | quant_post    | 48.3495        | 30.3069        | 22.1506        | 45.8715        | 27.4105        | 18.2223        |
| 高通835 | ResNet50    | FP32 baseline | 526.811        | 319.6486       | 205.8345       | 506.1138       | 335.1584       | 214.8936       |
| 高通835 | ResNet50    | quant_aware   | 475.4538       | 256.8672       | 139.699        | 461.7344       | 247.9506       | 145.9847       |
| 高通835 | ResNet50    | quant_post    | 476.0507       | 256.5963       | 139.7266       | 461.9176       | 248.3795       | 149.353        |
| 高通855 | MobileNetV1 | FP32 baseline | 33.5086        | 19.5773        | 11.7534        | 31.3474        | 18.5382        | 10.0811        |
| 高通855 | MobileNetV1 | quant_aware   | 36.7067        | 21.628         | 11.0372        | 14.0238        | 8.199          | 4.2588         |
| 高通855 | MobileNetV1 | quant_post    | 37.0498        | 21.7081        | 11.0779        | 14.0947        | 8.1926         | 4.2934         |
| 高通855 | MobileNetV2 | FP32 baseline | 25.0396        | 15.2862        | 9.6609         | 22.909         | 14.1797        | 8.8325         |
| 高通855 | MobileNetV2 | quant_aware   | 28.1583        | 18.3317        | 11.8103        | 16.9158        | 11.1606        | 7.4148         |
| 高通855 | MobileNetV2 | quant_post    | 28.1631        | 18.3917        | 11.8333        | 16.9399        | 11.1772        | 7.4176         |
| 高通855 | ResNet50    | FP32 baseline | 185.3705       | 113.0825       | 87.0741        | 177.7367       | 110.0433       | 74.4114        |
| 高通855 | ResNet50    | quant_aware   | 327.6883       | 202.4536       | 106.243        | 243.5621       | 150.0542       | 78.4205        |
| 高通855 | ResNet50    | quant_post    | 328.2683       | 201.9937       | 106.744        | 242.6397       | 150.0338       | 79.8659        |
| 麒麟970 | MobileNetV1 | FP32 baseline | 101.2455       | 56.4053        | 35.6484        | 94.8985        | 51.7251        | 31.9511        |
| 麒麟970 | MobileNetV1 | quant_aware   | 62.5012        | 32.1863        | 16.6018        | 57.7477        | 29.2116        | 15.0703        |
| 麒麟970 | MobileNetV1 | quant_post    | 62.4412        | 32.2585        | 16.6215        | 57.825         | 29.2573        | 15.1206        |
| 麒麟970 | MobileNetV2 | FP32 baseline | 70.4176        | 42.0795        | 25.1939        | 68.9597        | 39.2145        | 22.6617        |
| 麒麟970 | MobileNetV2 | quant_aware   | 52.9961        | 31.5323        | 22.1447        | 49.4858        | 28.0856        | 18.7287        |
| 麒麟970 | MobileNetV2 | quant_post    | 53.0961        | 31.7987        | 21.8334        | 49.383         | 28.2358        | 18.3642        |
| 麒麟970 | ResNet50    | FP32 baseline | 586.8943       | 344.0858       | 228.2293       | 573.3344       | 351.4332       | 225.8006       |
| 麒麟970 | ResNet50    | quant_aware   | 488.361        | 260.1697       | 142.416        | 479.5668       | 249.8485       | 138.1742       |
| 麒麟970 | ResNet50    | quant_post    | 489.6188       | 258.3279       | 142.6063       | 480.0064       | 249.5339       | 138.5284       |


B
Bai Yifan 已提交
54 55 56 57 58 59



### 1.2 剪裁


60 61 62 63 64 65 66
PaddleLite推理耗时说明:

环境:Qualcomm SnapDragon 845 + armv8

速度指标:Thread1/Thread2/Thread4耗时

PaddleLite版本: v2.3
B
Bai Yifan 已提交
67 68


69 70 71 72 73 74 75 76 77 78 79
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | GFLOPs |PaddleLite推理耗时|TensorRT推理速度(FPS)| 下载 |
|:--:|:---:|:--:|:--:|:--:|:--:|:--:|:--:|
| MobileNetV1 |    Baseline    |         70.99%/89.68%         |       17       |  1.11  |66.052\35.8014\19.5762|-| [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
| MobileNetV1 |  uniform -50%  | 69.4%/88.66% (-1.59%/-1.02%)  |       9        |  0.56  | 33.5636\18.6834\10.5076|-|[下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_uniform-50.tar) |
| MobileNetV1 | sensitive -30% |  70.4%/89.3% (-0.59%/-0.38%)  |       12       |  0.74  | 46.5958\25.3098\13.6982|-|[下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-30.tar) |
| MobileNetV1 | sensitive -50% | 69.8% / 88.9% (-1.19%/-0.78%) |       9        |  0.56  |37.9892\20.7882\11.3144|-| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-50.tar) |
| MobileNetV2 |       -        |         72.15%/90.65%         |       15       |  0.59  |41.7874\23.375\13.3998|-| [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |  uniform -50%  | 65.79%/86.11% (-6.35%/-4.47%) |       11       | 0.296  |23.8842\13.8698\8.5572|-| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_uniform-50.tar) |
|  ResNet34   |       -        |         72.15%/90.65%         |       84       |  7.36  |217.808\139.943\96.7504|342.32| [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) |
|  ResNet34   |  uniform -50%  | 70.99%/89.95% (-1.36%/-0.87%) |       41       |  3.67  |114.787\75.0332\51.8438|452.41| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_uniform-50.tar) |
|  ResNet34   |  auto -55.05%  | 70.24%/89.63% (-2.04%/-1.06%) |       33       |  3.31  |105.924\69.3222\48.0246|457.25| [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_auto-55.tar) |
B
Bai Yifan 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94


### 1.3 蒸馏

| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | 下载 |
|:--:|:---:|:--:|:--:|:--:|
| MobileNetV1 |                     student                     |  70.99%/89.68%  |       17       | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|ResNet50_vd|teacher|79.12%/94.44%| 99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) |
|MobileNetV1|ResNet50_vd<sup>[1](#trans1)</sup> distill|72.77%/90.68% (+1.78%/+1.00%)| 17 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_distilled.tar) |
| MobileNetV2 |                     student                     |  72.15%/90.65%  |       15       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |            ResNet50_vd distill             |  74.28%/91.53% (+2.13%/+0.88%)  |       15       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_distilled.tar) |
|  ResNet50   |                     student                     |  76.50%/93.00%  |       99       | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet101|teacher|77.56%/93.64%| 173 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |
|  ResNet50   |             ResNet101 distill              |  77.29%/93.65% (+0.79%/+0.65%)  |       99       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_distilled.tar) |

95
注意:带"_vd"后缀代表该预训练模型使用了Mixup,Mixup相关介绍参考[mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)
B
Bai Yifan 已提交
96

C
ceci3 已提交
97 98
### 1.4 搜索

C
ceci3 已提交
99 100
数据集: ImageNet1000

C
ceci3 已提交
101 102 103 104
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | GFLOPs | 下载 |
|:--:|:---:|:--:|:--:|:--:|:--:|
| MobileNetV2 |       -        |            72.15%/90.65%           |     15      |  0.59  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |     SANAS      |  71.518%/90.208% (-0.632%/-0.442%) |     14      | 0.295  | [下载链接](https://paddlemodels.cdn.bcebos.com/PaddleSlim/MobileNetV2_sanas.tar) |
B
Bai Yifan 已提交
105

C
ceci3 已提交
106
数据集: Cifar10
107

C
ceci3 已提交
108 109 110 111 112 113 114 115
| 模型 |压缩方法 |  Acc  | 模型参数(MB) | 下载 |
|:---:|:--:|:--:|:--:|:--:|
|          Darts               |    -    |     97.135%        |        3.767        |  -  |
| Darts_SA(基于Darts搜索空间)  |  SANAS  | 97.276%(+0.141%)   |    3.344(-11.2%)    |  -  |


Note: MobileNetV2_NAS 的token是:[4, 4, 5, 1, 1, 2, 1, 1, 0, 2, 6, 2, 0, 3, 4, 5, 0, 4, 5, 5, 1, 4, 8, 0, 0]. Darts_SA的token是:[5, 5, 0, 5, 5, 10, 7, 7, 5, 7, 7, 11, 10, 12, 10, 0, 5, 3, 10, 8].

B
Bai Yifan 已提交
116 117 118 119 120 121
## 2. 目标检测

### 2.1 量化

数据集: COCO 2017

122 123 124
|              模型              |  压缩方法   | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) |   TensorRT时延(V100, ms) |  下载     |
| :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: |:----------: |
|      MobileNet-V1-YOLOv3       |      -      |  COCO  |     8     |      29.3      |      29.3      |      27.1      |       95       |  - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
C
ceci3 已提交
125 126
|      MobileNet-V1-YOLOv3       | quant_post  |  COCO  |     8     |     27.9 (-1.4)|    28.0 (-1.3)      |    26.0 (-1.0) |       25       | -  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) |
|      MobileNet-V1-YOLOv3       | quant_aware |  COCO  |     8     |     28.1 (-1.2)|  28.2 (-1.1)      |    25.8 (-1.2) |       26.3     | -  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_coco_quant_aware.tar) |
127 128 129 130 131
|      R34-YOLOv3                |      -      |  COCO  |     8     |      36.2      |      34.3      |      31.4      |       162       |  - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
|      R34-YOLOv3                | quant_post  |  COCO  |     8     | 35.7 (-0.5)    |      -         |      -         |       42.7      |  - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar) |
|      R34-YOLOv3                | quant_aware |  COCO  |     8     |  35.2 (-1.0)   | 33.3 (-1.0)    |     30.3 (-1.1)|       44       |  - | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |      -      |  COCO  |     8     |      41.4      |       -      |       -       |       177       | 18.56  |[下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | quant_aware |  COCO  |     8     |   40.6 (-0.8)  |       37.5   |       34.1    |       66       |  14.64 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) |
B
Bai Yifan 已提交
132 133 134 135 136 137 138



数据集:WIDER-FACE



139 140 141 142 143 144 145 146 147 148 149
|      模型      |  压缩方法   | Image/GPU | 输入尺寸 |        Easy/Medium/Hard         | 模型体积(MB) |                             下载                             |
| :------------: | :---------: | :-------: | :------: | :-----------------------------: | :------------: | :----------------------------------------------------------: |
|   BlazeFace    |      -      |     8     |   640    |         91.5/89.2/79.7          |      815       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
|   BlazeFace    | quant_post  |     8     |   640    | 87.8/85.1/74.9 (-3.7/-4.1/-4.8) |      228       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar) |
|   BlazeFace    | quant_aware |     8     |   640    | 90.5/87.9/77.6 (-1.0/-1.3/-2.1) |      228       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar) |
| BlazeFace-Lite |      -      |     8     |   640    |         90.9/88.5/78.1          |      711       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace-Lite | quant_post  |     8     |   640    | 89.4/86.7/75.7 (-1.5/-1.8/-2.4) |      211       | [下载链接]((https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar)) |
| BlazeFace-Lite | quant_aware |     8     |   640    | 89.7/87.3/77.0 (-1.2/-1.2/-1.1) |      211       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar) |
| BlazeFace-NAS  |      -      |     8     |   640    |         83.7/80.7/65.8          |      244       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace-NAS  | quant_post  |     8     |   640    | 81.6/78.3/63.6 (-2.1/-2.4/-2.2) |       71       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar) |
| BlazeFace-NAS  | quant_aware |     8     |   640    | 83.1/79.7/64.2 (-0.6/-1.0/-1.6) |       71       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar) |
B
Bai Yifan 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

### 2.2 剪裁

数据集:Pasacl VOC & COCO 2017

|              模型              |     压缩方法      |   数据集   | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | GFLOPs (608*608) |                             下载                             |
| :----------------------------: | :---------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :----------: | :--------------: | :----------------------------------------------------------: |
|      MobileNet-V1-YOLOv3       |     Baseline      | Pascal VOC |     8     |      76.2      |      76.7      |      75.3      |      94      |      40.49       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -52.88% | Pascal VOC |     8     |  77.6 (+1.4)   |   77.7 (1.0)   |  75.5 (+0.2)   |      31      |      19.08       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar) |
|      MobileNet-V1-YOLOv3       |         -         |    COCO    |     8     |      29.3      |      29.3      |      27.0      |      95      |      41.35       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -51.77% |    COCO    |     8     |  26.0 (-3.3)   |  25.1 (-4.2)   |  22.6 (-4.4)   |      32      |      19.94       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar) |
|         R50-dcn-YOLOv3         |         -         |    COCO    |     8     |      39.1      |       -        |       -        |     177      |      89.60       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar) |
|         R50-dcn-YOLOv3         | sensitive -9.37%  |    COCO    |     8     |  39.3 (+0.2)   |       -        |       -        |     150      |      81.20       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar) |
|         R50-dcn-YOLOv3         | sensitive -24.68% |    COCO    |     8     |  37.3 (-1.8)   |       -        |       -        |     113      |      67.48       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |         -         |    COCO    |     8     |      41.4      |       -        |       -        |     177      |      89.60       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37%  |    COCO    |     8     |  40.5 (-0.9)   |       -        |       -        |     150      |      81.20       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% |    COCO    |     8     |  37.8 (-3.3)   |       -        |       -        |     113      |      67.48       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar) |

### 2.3 蒸馏

数据集:Pasacl VOC & COCO 2017


|        模型         |        压缩方法         |   数据集   | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) |                             下载                             |
| :-----------------: | :---------------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 |            -            | Pascal VOC |     8     |      76.2      |      76.7      |      75.3      |       94       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|   ResNet34-YOLOv3   |            -            | Pascal VOC |     8     |      82.6      |      81.9      |      80.1      |      162       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | Pascal VOC |     8     |  79.0 (+2.8)   |  78.2 (+1.5)   |  75.5 (+0.2)   |       94       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) |
| MobileNet-V1-YOLOv3 |            -            |    COCO    |     8     |      29.3      |      29.3      |      27.0      |       95       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|   ResNet34-YOLOv3   |            -            |    COCO    |     8     |      36.2      |      34.3      |      31.4      |      163       | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill |    COCO    |     8     |  31.4 (+2.1)   |  30.0 (+0.7)   |  27.1 (+0.1)   |       95       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) |


C
ceci3 已提交
183 184 185 186 187 188 189 190
### 2.4 搜索

数据集:WIDER-FACE

|      模型      |  压缩方法   | Image/GPU | 输入尺寸 |        Easy/Medium/Hard         | 模型体积(KB) |    硬件延时(ms)|                         下载                             |
| :------------: | :---------: | :-------: | :------: | :-----------------------------: | :------------: | :------------: | :----------------------------------------------------------: |
|   BlazeFace    |      -      |     8     |   640    |         91.5/89.2/79.7          |      815       |       71.862     | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
| BlazeFace-NAS  |      -      |     8     |   640    |         83.7/80.7/65.8          |      244       |       21.117     |[下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
C
ceci3 已提交
191
| BlazeFace-NASV2 |    SANAS    |     8     |   640    |         87.0/83.7/68.5          |      389       |       22.558     | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar) |
C
ceci3 已提交
192

C
ceci3 已提交
193
Note: 硬件延时时间是利用提供的硬件延时表得到的,硬件延时表是在855芯片上基于PaddleLite测试的结果。BlazeFace-NASV2的详细配置在[这里](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/face_detection/blazeface_nas_v2.yml).
C
ceci3 已提交
194

B
Bai Yifan 已提交
195 196 197 198 199 200
## 3. 图像分割

数据集:Cityscapes

### 3.1 量化

201 202 203 204 205 206 207 208 209
|          模型          |  压缩方法   |     mIoU      | 模型体积(MB) |                             下载                             |
| :--------------------: | :---------: | :-----------: | :------------: | :----------------------------------------------------------: |
| DeepLabv3+/MobileNetv1 |      -      |     63.26     |      6.6       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1.tar )                         |
| DeepLabv3+/MobileNetv1 | quant_post  | 58.63 (-4.63) |      1.8       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv1 | quant_aware | 62.03 (-1.23) |      1.8       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_aware.tar) |
| DeepLabv3+/MobileNetv2 |      -      |     69.81     |      7.4       | [下载链接](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |
| DeepLabv3+/MobileNetv2 | quant_post  | 67.59 (-2.22) |      2.1       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv2 | quant_aware | 68.33 (-1.48) |      2.1       | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_aware.tar) |

B
Bai Yifan 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
图像分割模型Lite时延(ms), 输入尺寸769x769

| 设备    | 模型类型               | 压缩策略      | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------- | ---------------------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| 高通835 | Deeplabv3- MobileNetV1 | FP32 baseline | 1227.9894      | 734.1922       | 527.9592       | 1109.96        | 699.3818       | 479.0818       |
| 高通835 | Deeplabv3- MobileNetV1 | quant_aware   | 848.6544       | 512.785        | 382.9915       | 752.3573       | 455.0901       | 307.8808       |
| 高通835 | Deeplabv3- MobileNetV1 | quant_post    | 840.2323       | 510.103        | 371.9315       | 748.9401       | 452.1745       | 309.2084       |
| 高通835 | Deeplabv3-MobileNetV2  | FP32 baseline | 1282.8126      | 793.2064       | 653.6538       | 1193.9908      | 737.1827       | 593.4522       |
| 高通835 | Deeplabv3-MobileNetV2  | quant_aware   | 976.0495       | 659.0541       | 513.4279       | 892.1468       | 582.9847       | 484.7512       |
| 高通835 | Deeplabv3-MobileNetV2  | quant_post    | 981.44         | 658.4969       | 538.6166       | 885.3273       | 586.1284       | 484.0018       |
| 高通855 | Deeplabv3- MobileNetV1 | FP32 baseline | 568.8748       | 339.8578       | 278.6316       | 420.6031       | 281.3197       | 217.5222       |
| 高通855 | Deeplabv3- MobileNetV1 | quant_aware   | 608.7578       | 347.2087       | 260.653        | 241.2394       | 177.3456       | 143.9178       |
| 高通855 | Deeplabv3- MobileNetV1 | quant_post    | 609.0142       | 347.3784       | 259.9825       | 239.4103       | 180.1894       | 139.9178       |
| 高通855 | Deeplabv3-MobileNetV2  | FP32 baseline | 639.4425       | 390.1851       | 322.7014       | 477.7667       | 339.7411       | 262.2847       |
| 高通855 | Deeplabv3-MobileNetV2  | quant_aware   | 703.7275       | 497.689        | 417.1296       | 394.3586       | 300.2503       | 239.9204       |
| 高通855 | Deeplabv3-MobileNetV2  | quant_post    | 705.7589       | 474.4076       | 427.2951       | 394.8352       | 297.4035       | 264.6724       |
| 麒麟970 | Deeplabv3- MobileNetV1 | FP32 baseline | 1682.1792      | 1437.9774      | 1181.0246      | 1261.6739      | 1068.6537      | 690.8225       |
| 麒麟970 | Deeplabv3- MobileNetV1 | quant_aware   | 1062.3394      | 1248.1014      | 878.3157       | 774.6356       | 710.6277       | 528.5376       |
| 麒麟970 | Deeplabv3- MobileNetV1 | quant_post    | 1109.1917      | 1339.6218      | 866.3587       | 771.5164       | 716.5255       | 500.6497       |
| 麒麟970 | Deeplabv3-MobileNetV2  | FP32 baseline | 1771.1301      | 1746.0569      | 1222.4805      | 1448.9739      | 1192.4491      | 760.606        |
| 麒麟970 | Deeplabv3-MobileNetV2  | quant_aware   | 1320.2905      | 921.4522       | 676.0732       | 1145.8801      | 821.5685       | 590.1713       |
| 麒麟970 | Deeplabv3-MobileNetV2  | quant_post    | 1320.386       | 918.5328       | 672.2481       | 1020.753       | 820.094        | 591.4114       |




B
Bai Yifan 已提交
236 237 238 239 240 241 242 243

### 3.2 剪裁

|   模型    |     压缩方法      |     mIoU      | 模型体积(MB) | GFLOPs |                             下载                             |
| :-------: | :---------------: | :-----------: | :------------: | :----: | :----------------------------------------------------------: |
| fast-scnn |     baseline      |     69.64     |       11       | 14.41  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar) |
| fast-scnn | uniform  -17.07%  | 69.58 (-0.06) |      8.5       | 11.95  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar) |
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) |      5.7       |  7.55  | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar) |