resnet.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import math
from paddle.fluid.param_attr import ParamAttr

__all__ = ["ResNet", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [10, 16, 30],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class ResNet():
    def __init__(self, layers=50, prefix_name=''):
        self.params = train_parameters
        self.layers = layers
        self.prefix_name = prefix_name

    def net(self, input, class_dim=1000, conv1_name='conv1', fc_name=None):
        layers = self.layers
        prefix_name = self.prefix_name if self.prefix_name is '' else self.prefix_name + '_'
        supported_layers = [34, 50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

        # TODO(wanghaoshuang@baidu.com):
        # fix name("conv1") conflict between student and teacher in distillation.
        conv = self.conv_bn_layer(
            input=input,
            num_filters=64,
            filter_size=7,
            stride=2,
            act='relu',
            name=prefix_name + conv1_name)
        conv = fluid.layers.pool2d(
            input=conv,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')

        if layers >= 50:
            for block in range(len(depth)):
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    conv_name = prefix_name + conv_name
                    conv = self.bottleneck_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        name=conv_name)

            pool = fluid.layers.pool2d(
                input=conv, pool_size=7, pool_type='avg', global_pooling=True)
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            fc_name = fc_name if fc_name is None else prefix_name + fc_name
            out = fluid.layers.fc(input=pool,
                                  size=class_dim,
                                  act='softmax',
                                  name=fc_name,
                                  param_attr=fluid.param_attr.ParamAttr(
                                      initializer=fluid.initializer.Uniform(
                                          -stdv, stdv)))
        else:
            for block in range(len(depth)):
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    conv_name = prefix_name + conv_name
                    conv = self.basic_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        is_first=block == i == 0,
                        name=conv_name)

            pool = fluid.layers.pool2d(
                input=conv, pool_type='avg', global_pooling=True)
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            fc_name = fc_name if fc_name is None else prefix_name + fc_name
            out = fluid.layers.fc(
                input=pool,
                size=class_dim,
                act='softmax',
                name=fc_name,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))

        return out

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None,
                      name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False,
            name=name + '.conv2d.output.1')
        if self.prefix_name == '':
            if name == "conv1":
                bn_name = "bn_" + name
            else:
                bn_name = "bn" + name[3:]
        else:
            if name.split("_")[1] == "conv1":
                bn_name = name.split("_", 1)[0] + "_bn_" + name.split("_",
                                                                      1)[1]
            else:
                bn_name = name.split("_", 1)[0] + "_bn" + name.split("_",
                                                                     1)[1][3:]
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
            name=bn_name + '.output.1',
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance', )

    def shortcut(self, input, ch_out, stride, is_first, name):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1 or is_first == True:
            return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, name):
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
        conv2 = self.conv_bn_layer(
            input=conv1,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        short = self.shortcut(
            input,
            num_filters * 4,
            stride,
            is_first=False,
            name=name + "_branch1")

        return fluid.layers.elementwise_add(
            x=short, y=conv2, act='relu', name=name + ".add.output.5")

    def basic_block(self, input, num_filters, stride, is_first, name):
        conv0 = self.conv_bn_layer(
            input=input,
            num_filters=num_filters,
            filter_size=3,
            act='relu',
            stride=stride,
            name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
        short = self.shortcut(
            input, num_filters, stride, is_first, name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')


def ResNet34(prefix_name=''):
    model = ResNet(layers=34, prefix_name=prefix_name)
    return model


def ResNet50(prefix_name=''):
    model = ResNet(layers=50, prefix_name=prefix_name)
    return model


def ResNet101():
    model = ResNet(layers=101)
    return model


def ResNet152():
    model = ResNet(layers=152)
    return model