from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.fluid as fluid import math from paddle.fluid.param_attr import ParamAttr __all__ = ["ResNet", "ResNet34", "ResNet50", "ResNet101", "ResNet152"] train_parameters = { "input_size": [3, 224, 224], "input_mean": [0.485, 0.456, 0.406], "input_std": [0.229, 0.224, 0.225], "learning_strategy": { "name": "piecewise_decay", "batch_size": 256, "epochs": [10, 16, 30], "steps": [0.1, 0.01, 0.001, 0.0001] } } class ResNet(): def __init__(self, layers=50, prefix_name=''): self.params = train_parameters self.layers = layers self.prefix_name = prefix_name def net(self, input, class_dim=1000, conv1_name='conv1', fc_name=None): layers = self.layers prefix_name = self.prefix_name if self.prefix_name is '' else self.prefix_name + '_' supported_layers = [34, 50, 101, 152] assert layers in supported_layers, \ "supported layers are {} but input layer is {}".format(supported_layers, layers) if layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] num_filters = [64, 128, 256, 512] # TODO(wanghaoshuang@baidu.com): # fix name("conv1") conflict between student and teacher in distillation. conv = self.conv_bn_layer( input=input, num_filters=64, filter_size=7, stride=2, act='relu', name=prefix_name + conv1_name) conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') if layers >= 50: for block in range(len(depth)): for i in range(depth[block]): if layers in [101, 152] and block == 2: if i == 0: conv_name = "res" + str(block + 2) + "a" else: conv_name = "res" + str(block + 2) + "b" + str(i) else: conv_name = "res" + str(block + 2) + chr(97 + i) conv_name = prefix_name + conv_name conv = self.bottleneck_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, name=conv_name) pool = fluid.layers.pool2d( input=conv, pool_size=7, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) fc_name = fc_name if fc_name is None else prefix_name + fc_name out = fluid.layers.fc(input=pool, size=class_dim, act='softmax', name=fc_name, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform( -stdv, stdv))) else: for block in range(len(depth)): for i in range(depth[block]): conv_name = "res" + str(block + 2) + chr(97 + i) conv_name = prefix_name + conv_name conv = self.basic_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, is_first=block == i == 0, name=conv_name) pool = fluid.layers.pool2d( input=conv, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) fc_name = fc_name if fc_name is None else prefix_name + fc_name out = fluid.layers.fc( input=pool, size=class_dim, act='softmax', name=fc_name, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv))) return out def conv_bn_layer(self, input, num_filters, filter_size, stride=1, groups=1, act=None, name=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, param_attr=ParamAttr(name=name + "_weights"), bias_attr=False, name=name + '.conv2d.output.1') if self.prefix_name == '': if name == "conv1": bn_name = "bn_" + name else: bn_name = "bn" + name[3:] else: if name.split("_")[1] == "conv1": bn_name = name.split("_", 1)[0] + "_bn_" + name.split("_", 1)[1] else: bn_name = name.split("_", 1)[0] + "_bn" + name.split("_", 1)[1][3:] return fluid.layers.batch_norm( input=conv, act=act, name=bn_name + '.output.1', param_attr=ParamAttr(name=bn_name + '_scale'), bias_attr=ParamAttr(bn_name + '_offset'), moving_mean_name=bn_name + '_mean', moving_variance_name=bn_name + '_variance', ) def shortcut(self, input, ch_out, stride, is_first, name): ch_in = input.shape[1] if ch_in != ch_out or stride != 1 or is_first == True: return self.conv_bn_layer(input, ch_out, 1, stride, name=name) else: return input def bottleneck_block(self, input, num_filters, stride, name): conv0 = self.conv_bn_layer( input=input, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a") conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, stride=stride, act='relu', name=name + "_branch2b") conv2 = self.conv_bn_layer( input=conv1, num_filters=num_filters * 4, filter_size=1, act=None, name=name + "_branch2c") short = self.shortcut( input, num_filters * 4, stride, is_first=False, name=name + "_branch1") return fluid.layers.elementwise_add( x=short, y=conv2, act='relu', name=name + ".add.output.5") def basic_block(self, input, num_filters, stride, is_first, name): conv0 = self.conv_bn_layer( input=input, num_filters=num_filters, filter_size=3, act='relu', stride=stride, name=name + "_branch2a") conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, filter_size=3, act=None, name=name + "_branch2b") short = self.shortcut( input, num_filters, stride, is_first, name=name + "_branch1") return fluid.layers.elementwise_add(x=short, y=conv1, act='relu') def ResNet34(prefix_name=''): model = ResNet(layers=34, prefix_name=prefix_name) return model def ResNet50(prefix_name=''): model = ResNet(layers=50, prefix_name=prefix_name) return model def ResNet101(): model = ResNet(layers=101) return model def ResNet152(): model = ResNet(layers=152) return model