index.html 21.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="shortcut icon" href="../img/favicon.ico">
  <title>模型库 - PaddleSlim Docs</title>
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
  
  <script>
    // Current page data
    var mkdocs_page_name = "\u6a21\u578b\u5e93";
    var mkdocs_page_input_path = "model_zoo.md";
    var mkdocs_page_url = null;
  </script>
  
  <script src="../js/jquery-2.1.1.min.js" defer></script>
  <script src="../js/modernizr-2.8.3.min.js" defer></script>
  <script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
      <div class="wy-side-nav-search">
        <a href=".." class="icon icon-home"> PaddleSlim Docs</a>
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
	<ul class="current">
	  
          
            <li class="toctree-l1">
		
    <a class="" href="..">Home</a>
	    </li>
          
            <li class="toctree-l1">
		
    <span class="caption-text">API</span>
    <ul class="subnav">
                <li class="">
                    
    <a class="" href="../api/quantization_api/">量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../api/prune_api/">剪枝与敏感度</a>
                </li>
                <li class="">
                    
    <a class="" href="../api/analysis_api/">模型分析</a>
                </li>
                <li class="">
                    
    <a class="" href="../api/single_distiller_api/">知识蒸馏</a>
                </li>
                <li class="">
                    
    <a class="" href="../api/nas_api/">SA搜索</a>
                </li>
                <li class="">
                    
    <a class="" href="../api/search_space/">搜索空间</a>
                </li>
                <li class="">
                    
    <a class="" href="../table_latency/">硬件延时评估表</a>
                </li>
    </ul>
	    </li>
          
            <li class="toctree-l1">
		
    <span class="caption-text">教程</span>
    <ul class="subnav">
                <li class="">
                    
    <a class="" href="../tutorials/quant_post_demo/">离线量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../tutorials/quant_aware_demo/">量化训练</a>
                </li>
                <li class="">
                    
    <a class="" href="../tutorials/quant_embedding_demo/">Embedding量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../tutorials/nas_demo/">SA搜索</a>
                </li>
                <li class="">
                    
    <a class="" href="../tutorials/distillation_demo/">知识蒸馏</a>
                </li>
    </ul>
	    </li>
          
            <li class="toctree-l1">
		
    <a class="" href="../algo/algo/">算法原理</a>
	    </li>
          
            <li class="toctree-l1 current">
		
    <a class="current" href="./">模型库</a>
    <ul class="subnav">
            
    <li class="toctree-l2"><a href="#1">1. 量化</a></li>
    
        <ul>
        
            <li><a class="toctree-l3" href="#11">1.1 图象分类</a></li>
        
            <li><a class="toctree-l3" href="#12">1.2 目标检测</a></li>
        
            <li><a class="toctree-l3" href="#13">1.3 图像分割</a></li>
        
        </ul>
    

    <li class="toctree-l2"><a href="#2">2. 剪枝</a></li>
    
        <ul>
        
            <li><a class="toctree-l3" href="#21">2.1 图像分类</a></li>
        
            <li><a class="toctree-l3" href="#22">2.2 目标检测</a></li>
        
            <li><a class="toctree-l3" href="#23">2.3 图像分割</a></li>
        
        </ul>
    

    <li class="toctree-l2"><a href="#3">3. 蒸馏</a></li>
    
        <ul>
        
            <li><a class="toctree-l3" href="#31">3.1 图象分类</a></li>
        
            <li><a class="toctree-l3" href="#32">3.2 目标检测</a></li>
        
        </ul>
    

    </ul>
	    </li>
          
        </ul>
      </div>
      &nbsp;
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="..">PaddleSlim Docs</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="..">Docs</a> &raquo;</li>
    
      
    
    <li>模型库</li>
    <li class="wy-breadcrumbs-aside">
      
        <a href="https://github.com/PaddlePaddle/PaddleSlim/edit/master/docs/model_zoo.md"
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
                <h2 id="1">1. 量化<a class="headerlink" href="#1" title="Permanent link">#</a></h2>
<h3 id="11">1.1 图象分类<a class="headerlink" href="#11" title="Permanent link">#</a></h3>
205
<p>数据集:ImageNet1000类</p>
206 207 208 209 210 211 212 213 214 215 216 217
<p>评价指标:Top-1/Top-5准确率</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
</tr>
</thead>
<tbody>
<tr>
218
<td align="center">MobileNetV1 FP32</td>
219
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar">70.99%/89.68%</a></td>
220 221
<td align="center"><a href="">xx%/xx%</a></td>
<td align="center"><a href="">xx%/xx%</a></td>
222 223
</tr>
<tr>
224
<td align="center">MobileNetV2 FP32</td>
225
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar">72.15%/90.65%</a></td>
226 227
<td align="center"></td>
<td align="center"></td>
228 229
</tr>
<tr>
230
<td align="center">ResNet50 FP32</td>
231
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar">76.50%/93.00%</a></td>
232 233
<td align="center"></td>
<td align="center"></td>
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
</tr>
</tbody>
</table>
<p>量化训练前后,模型大小的变化对比如下:</p>
<table>
<thead>
<tr>
<th align="left">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">MobileNetV1</td>
<td align="center">17M</td>
251 252
<td align="center"><a href="">xx%/xx%</a></td>
<td align="center"><a href="">xx%/xx%</a></td>
253 254 255
</tr>
<tr>
<td align="left">MobileNetV2</td>
256
<td align="center">xxM</td>
257 258 259 260 261 262 263 264 265 266 267 268
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="left">ResNet50</td>
<td align="center">99M</td>
<td align="center"></td>
<td align="center"></td>
</tr>
</tbody>
</table>
<h3 id="12">1.2 目标检测<a class="headerlink" href="#12" title="Permanent link">#</a></h3>
269
<p>数据集:COCO 2017 </p>
270 271 272 273
<table>
<thead>
<tr>
<th align="center">Model</th>
274 275 276 277 278
<th align="center">输入尺寸</th>
<th align="center">Image/GPU</th>
<th align="center">FP32 BoxAP</th>
<th align="center">离线量化 BoxAP</th>
<th align="center">量化训练 BoxAP</th>
279 280 281 282 283
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
284 285
<td align="center">608</td>
<td align="center">8</td>
286
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar">29.3</a></td>
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
<td align="center"><a href="">xx</a></td>
<td align="center"><a href="">xx</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
305 306 307
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
308 309
<td align="center">608</td>
<td align="center"></td>
310
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar">41.4</a></td>
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
329 330 331
</tr>
</tbody>
</table>
332
<p>数据集:WIDER-FACE</p>
333 334 335 336 337
<p>评价指标:Easy/Medium/Hard mAP</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
338 339
<th align="center">输入尺寸</th>
<th align="center">Image/GPU</th>
340 341 342 343 344 345 346 347
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">BlazeFace</td>
348 349
<td align="center">640</td>
<td align="center">8</td>
350
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar">0.915/0.892/0.797</a></td>
351 352
<td align="center"><a href="">xx/xx/xx</a></td>
<td align="center"><a href="">xx/xx/xx</a></td>
353 354 355
</tr>
<tr>
<td align="center">BlazeFace-Lite</td>
356 357
<td align="center">640</td>
<td align="center"></td>
358 359 360 361 362 363
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar">0.909/0.885/0.781</a></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">BlazeFace-NAS</td>
364 365
<td align="center">640</td>
<td align="center"></td>
366 367 368 369 370 371 372
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar">0.837/0.807/0.658</a></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</tbody>
</table>
<h3 id="13">1.3 图像分割<a class="headerlink" href="#13" title="Permanent link">#</a></h3>
373
<p>数据集:Cityscapes</p>
374 375 376 377
<table>
<thead>
<tr>
<th align="center">Model</th>
378 379 380
<th align="center">FP32 mIoU</th>
<th align="center">离线量化 mIoU</th>
<th align="center">量化训练 mIoU</th>
381 382 383 384 385 386
</tr>
</thead>
<tbody>
<tr>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center"><a href="">63.26</a></td>
387 388
<td align="center"><a href="">xx</a></td>
<td align="center"><a href="">xx</a></td>
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center"><a href="https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz">69.81</a></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</tbody>
</table>
<h2 id="2">2. 剪枝<a class="headerlink" href="#2" title="Permanent link">#</a></h2>
<h3 id="21">2.1 图像分类<a class="headerlink" href="#21" title="Permanent link">#</a></h3>
<p>数据:ImageNet1000类</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
405
<th align="center">Top-1/Top-5</th>
406 407 408 409 410 411
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar">70.99%/89.68%</a></td>
412 413 414 415 416 417 418 419
</tr>
<tr>
<td align="center">MobileNetV1 uniform -50%</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">MobileNetV1 sensitive -xx%</td>
<td align="center"></td>
420 421 422 423
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar">72.15%/90.65%</a></td>
424 425 426 427 428 429 430 431
</tr>
<tr>
<td align="center">MobileNetV2 uniform -50%</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">MobileNetV2 sensitive -xx%</td>
<td align="center"></td>
432 433 434 435
</tr>
<tr>
<td align="center">ResNet34</td>
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar">74.57%/92.14%</a></td>
436 437 438 439 440 441 442 443
</tr>
<tr>
<td align="center">ResNet34 uniform -50%</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">ResNet34 auto -50%</td>
<td align="center"></td>
444 445 446 447 448 449 450 451 452 453
</tr>
</tbody>
</table>
<h3 id="22">2.2 目标检测<a class="headerlink" href="#22" title="Permanent link">#</a></h3>
<p>数据:Pasacl VOC &amp; COCO 2017</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">数据集</th>
454 455 456 457
<th align="center">输入尺寸</th>
<th align="center">Image/GPU</th>
<th align="center">baseline mAP</th>
<th align="center">敏感度剪枝 mAP</th>
458 459 460 461 462 463
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">Pasacl VOC</td>
464 465
<td align="center">608</td>
<td align="center">8</td>
466
<td align="center"><a href="">76.2</a></td>
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
<td align="center"><a href="">77.59</a> (-50%)</td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">Pasacl VOC</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"><a href="">76.7</a></td>
<td align="center"><a href="">xx</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">Pasacl VOC</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"><a href="">75.2</a></td>
<td align="center"><a href="">xx</a></td>
484 485 486 487
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">COCO</td>
488 489
<td align="center">608</td>
<td align="center"></td>
490
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar">29.3</a></td>
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
<td align="center"><a href="">29.56</a> (-20%)</td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">COCO</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"><a href="">29.3</a></td>
<td align="center"><a href="">xx</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">COCO</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"><a href="">27.1</a></td>
<td align="center"><a href="">xx</a></td>
508 509 510 511
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">COCO</td>
512 513
<td align="center">608</td>
<td align="center"></td>
514
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar">41.4</a></td>
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
<td align="center"><a href="">37.8</a> (-30%)</td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">COCO</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">COCO</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
532 533 534 535 536 537 538 539 540
</tr>
</tbody>
</table>
<h3 id="23">2.3 图像分割<a class="headerlink" href="#23" title="Permanent link">#</a></h3>
<p>数据:Cityscapes</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
541 542
<th align="center">Baseline mIoU</th>
<th align="center">xx剪枝 mIoU</th>
543 544 545 546 547 548
</tr>
</thead>
<tbody>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center"><a href="https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz">69.81</a></td>
549
<td align="center"><a href="">xx</a></td>
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
</tr>
</tbody>
</table>
<h2 id="3">3. 蒸馏<a class="headerlink" href="#3" title="Permanent link">#</a></h2>
<h3 id="31">3.1 图象分类<a class="headerlink" href="#31" title="Permanent link">#</a></h3>
<p>数据:ImageNet1000类</p>
<p>评价指标:Top-1/Top-5准确率</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">baseline</th>
<th align="center">蒸馏后</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar">70.99%/89.68%</a></td>
<td align="center"><a href="">72.79%/90.69%</a> (teacher: ResNet50_vd<sup><a href="#trans1">1</a></sup>)</td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar">72.15%/90.65%</a></td>
<td align="center"><a href="">74.30%/91.52%</a> (teacher: ResNet50_vd)</td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar">76.50%/93.00%</a></td>
<td align="center"><a href="">77.40%/93.48%</a> (teacher: ResNet101<sup><a href="#trans2">2</a></sup>)</td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="admonition-title">Note</p>
585 586
<p><a name="trans1">  [1]</a><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar">ResNet50_vd</a>预训练模型Top-1/Top-5准确率分别为79.12%/94.44%</p>
<p>带_vd后缀代表开启了Mixup训练,Mixup相关介绍参考<a href="https://arxiv.org/abs/1710.09412">mixup: Beyond Empirical Risk Minimization</a></p>
587 588 589 590 591 592 593 594 595
<p><a name="trans1">[2]</a><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar">ResNet101</a>预训练模型Top-1/Top-5准确率分别为77.56%/93.64%</p>
</div>
<h3 id="32">3.2 目标检测<a class="headerlink" href="#32" title="Permanent link">#</a></h3>
<p>数据:Pasacl VOC &amp; COCO 2017</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">数据集</th>
596 597
<th align="center">输入尺寸</th>
<th align="center">Image/GPU</th>
598
<th align="center">baseline</th>
599
<th align="center">蒸馏后 mAP</th>
600 601 602 603 604 605
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">Pasacl VOC</td>
606 607
<td align="center">640</td>
<td align="center">16</td>
608 609 610 611 612
<td align="center"><a href="">76.2</a></td>
<td align="center"><a href="">79.0</a> (teacher: ResNet34-YOLOv3-VOC<sup><a href="#trans3">3</a></sup>)</td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
<td align="center">Pasacl VOC</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"><a href="">76.7</a></td>
<td align="center"><a href="">78.2</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">Pasacl VOC</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"><a href="">75.2</a></td>
<td align="center"><a href="">75.5</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
629
<td align="center">COCO</td>
630 631
<td align="center">640</td>
<td align="center"></td>
632 633 634
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar">29.3</a></td>
<td align="center"><a href="">31.0</a> (teacher: ResNet34-YOLOv3-COCO<sup><a href="#trans4">4</a></sup>)</td>
</tr>
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">COCO</td>
<td align="center">416</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">COCO</td>
<td align="center">320</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
</tbody>
</table>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><a name="trans1">[3]</a><a href="">ResNet34-YOLOv3-VOC</a>预训练模型的Box AP为82.6</p>
<p><a name="trans1">[4]</a><a href="">ResNet34-YOLOv3-COCO</a>预训练模型的Box AP为36.2</p>
</div>
              
            </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
      
        <a href="../algo/algo/" class="btn btn-neutral" title="算法原理"><span class="icon icon-circle-arrow-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" style="cursor: pointer">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
        <span><a href="../algo/algo/" style="color: #fcfcfc;">&laquo; Previous</a></span>
      
      
    </span>
</div>
    <script>var base_url = '..';</script>
    <script src="../js/theme.js" defer></script>
      <script src="../mathjax-config.js" defer></script>
      <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML" defer></script>
      <script src="../search/main.js" defer></script>

</body>
</html>