index.html 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="shortcut icon" href="../img/favicon.ico">
  <title>模型库 - PaddleSlim Docs</title>
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
  
  <script>
    // Current page data
    var mkdocs_page_name = "\u6a21\u578b\u5e93";
    var mkdocs_page_input_path = "model_zoo.md";
    var mkdocs_page_url = null;
  </script>
  
  <script src="../js/jquery-2.1.1.min.js" defer></script>
  <script src="../js/modernizr-2.8.3.min.js" defer></script>
  <script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
      <div class="wy-side-nav-search">
        <a href=".." class="icon icon-home"> PaddleSlim Docs</a>
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
	<ul class="current">
	  
          
            <li class="toctree-l1">
		
    <a class="" href="..">Home</a>
	    </li>
          
            <li class="toctree-l1">
		
    <span class="caption-text">API</span>
    <ul class="subnav">
                <li class="">
                    
    <a class="" href="../api/quantization_api/">量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../api/prune_api/">剪枝与敏感度</a>
                </li>
                <li class="">
                    
    <a class="" href="../api/analysis_api/">模型分析</a>
                </li>
                <li class="">
                    
    <a class="" href="../api/single_distiller_api/">知识蒸馏</a>
                </li>
                <li class="">
                    
    <a class="" href="../api/nas_api/">SA搜索</a>
                </li>
                <li class="">
                    
    <a class="" href="../api/search_space/">搜索空间</a>
                </li>
                <li class="">
                    
    <a class="" href="../table_latency/">硬件延时评估表</a>
                </li>
    </ul>
	    </li>
          
            <li class="toctree-l1">
		
    <span class="caption-text">教程</span>
    <ul class="subnav">
                <li class="">
                    
    <a class="" href="../tutorials/quant_post_demo/">离线量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../tutorials/quant_aware_demo/">量化训练</a>
                </li>
                <li class="">
                    
    <a class="" href="../tutorials/quant_embedding_demo/">Embedding量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../tutorials/nas_demo/">SA搜索</a>
                </li>
                <li class="">
                    
    <a class="" href="../tutorials/distillation_demo/">知识蒸馏</a>
                </li>
    </ul>
	    </li>
          
            <li class="toctree-l1">
		
    <a class="" href="../algo/algo/">算法原理</a>
	    </li>
          
            <li class="toctree-l1 current">
		
    <a class="current" href="./">模型库</a>
    <ul class="subnav">
            
    <li class="toctree-l2"><a href="#1">1. 量化</a></li>
    
        <ul>
        
            <li><a class="toctree-l3" href="#11">1.1 图象分类</a></li>
        
            <li><a class="toctree-l3" href="#12">1.2 目标检测</a></li>
        
            <li><a class="toctree-l3" href="#13">1.3 图像分割</a></li>
        
        </ul>
    

    <li class="toctree-l2"><a href="#2">2. 剪枝</a></li>
    
        <ul>
        
            <li><a class="toctree-l3" href="#21">2.1 图像分类</a></li>
        
            <li><a class="toctree-l3" href="#22">2.2 目标检测</a></li>
        
            <li><a class="toctree-l3" href="#23">2.3 图像分割</a></li>
        
        </ul>
    

    <li class="toctree-l2"><a href="#3">3. 蒸馏</a></li>
    
        <ul>
        
            <li><a class="toctree-l3" href="#31">3.1 图象分类</a></li>
        
            <li><a class="toctree-l3" href="#32">3.2 目标检测</a></li>
        
        </ul>
    

    </ul>
	    </li>
          
        </ul>
      </div>
      &nbsp;
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="..">PaddleSlim Docs</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="..">Docs</a> &raquo;</li>
    
      
    
    <li>模型库</li>
    <li class="wy-breadcrumbs-aside">
      
        <a href="https://github.com/PaddlePaddle/PaddleSlim/edit/master/docs/model_zoo.md"
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
                <h2 id="1">1. 量化<a class="headerlink" href="#1" title="Permanent link">#</a></h2>
<h3 id="11">1.1 图象分类<a class="headerlink" href="#11" title="Permanent link">#</a></h3>
<p>数据:ImageNet1000类</p>
<p>评价指标:Top-1/Top-5准确率</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar">70.99%/89.68%</a></td>
<td align="center"><a href="">70.24%/89.03%</a></td>
<td align="center"><a href="">70.70%/89.55%</a></td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar">72.15%/90.65%</a></td>
<td align="center"><a href="">71.36%/90.17%</a></td>
<td align="center"><a href="">72.02%/90.23%</a></td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar">76.50%/93.00%</a></td>
<td align="center"><a href="">76.26%/92.81%</a></td>
<td align="center"><a href="">76.59%/93.04%</a></td>
</tr>
</tbody>
</table>
<p>量化训练前后,模型大小的变化对比如下:</p>
<table>
<thead>
<tr>
<th align="left">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">MobileNetV1</td>
<td align="center">17M</td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="left">MobileNetV2</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="left">ResNet50</td>
<td align="center">99M</td>
<td align="center"></td>
<td align="center"></td>
</tr>
</tbody>
</table>
<h3 id="12">1.2 目标检测<a class="headerlink" href="#12" title="Permanent link">#</a></h3>
<p>数据:COCO 2017 </p>
<p>评价指标:mAP</p>
<p>输入尺寸:608</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar">29.3</a></td>
<td align="center"><a href="">27.9</a></td>
<td align="center"><a href="">28.0</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar">41.4</a></td>
<td align="center"><a href="">40.4</a></td>
<td align="center"><a href="">40.6</a></td>
</tr>
</tbody>
</table>
<p>数据:WIDER-FACE</p>
<p>评价指标:Easy/Medium/Hard mAP</p>
<p>输入尺寸:640</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">BlazeFace</td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar">0.915/0.892/0.797</a></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">BlazeFace-Lite</td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar">0.909/0.885/0.781</a></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">BlazeFace-NAS</td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar">0.837/0.807/0.658</a></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</tbody>
</table>
<h3 id="13">1.3 图像分割<a class="headerlink" href="#13" title="Permanent link">#</a></h3>
<p>数据:Cityscapes</p>
<p>评价指标:mIoU</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">FP32</th>
<th align="center">离线量化</th>
<th align="center">量化训练</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">DeepLabv3+/MobileNetv1</td>
<td align="center"><a href="">63.26</a></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center"><a href="https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz">69.81</a></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</tbody>
</table>
<h2 id="2">2. 剪枝<a class="headerlink" href="#2" title="Permanent link">#</a></h2>
<h3 id="21">2.1 图像分类<a class="headerlink" href="#21" title="Permanent link">#</a></h3>
<p>数据:ImageNet1000类</p>
<p>评价指标:Top-1/Top-5准确率</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">baseline</th>
<th align="center">均匀剪枝</th>
<th align="center">敏感度剪枝</th>
<th align="center">自动剪枝</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar">70.99%/89.68%</a></td>
<td align="center"><a href="">69.4%/88.66%</a></td>
<td align="center"><a href="">69.8%/88.9%</a></td>
<td align="center">-</td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar">72.15%/90.65%</a></td>
<td align="center"><a href="">65.79%/86.11%</a></td>
<td align="center">-</td>
<td align="center">-</td>
</tr>
<tr>
<td align="center">ResNet34</td>
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar">74.57%/92.14%</a></td>
<td align="center"><a href="">70.99%/89.95%</a></td>
<td align="center">-</td>
<td align="center"><a href="">70.24%/89.63%</a></td>
</tr>
</tbody>
</table>
<h3 id="22">2.2 目标检测<a class="headerlink" href="#22" title="Permanent link">#</a></h3>
<p>数据:Pasacl VOC &amp; COCO 2017</p>
<p>评价指标:mAP</p>
<p>输入尺寸:608</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">数据集</th>
<th align="center">baseline</th>
<th align="center">敏感度剪枝</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">Pasacl VOC</td>
<td align="center"><a href="">76.2</a></td>
<td align="center"><a href="">77.59</a></td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">COCO</td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar">29.3</a></td>
<td align="center"><a href="">29.56</a></td>
</tr>
<tr>
<td align="center">R50-dcn-YOLOv3</td>
<td align="center">COCO</td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar">41.4</a></td>
<td align="center"><a href="">37.8</a></td>
</tr>
</tbody>
</table>
<h3 id="23">2.3 图像分割<a class="headerlink" href="#23" title="Permanent link">#</a></h3>
<p>数据:Cityscapes</p>
<p>评价指标:mIoU</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">Baseline</th>
<th align="center">剪枝</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">DeepLabv3+/MobileNetv2</td>
<td align="center"><a href="https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz">69.81</a></td>
<td align="center"></td>
</tr>
</tbody>
</table>
<h2 id="3">3. 蒸馏<a class="headerlink" href="#3" title="Permanent link">#</a></h2>
<h3 id="31">3.1 图象分类<a class="headerlink" href="#31" title="Permanent link">#</a></h3>
<p>数据:ImageNet1000类</p>
<p>评价指标:Top-1/Top-5准确率</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">baseline</th>
<th align="center">蒸馏后</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNetV1</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar">70.99%/89.68%</a></td>
<td align="center"><a href="">72.79%/90.69%</a> (teacher: ResNet50_vd<sup><a href="#trans1">1</a></sup>)</td>
</tr>
<tr>
<td align="center">MobileNetV2</td>
<td align="center"><a href="https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar">72.15%/90.65%</a></td>
<td align="center"><a href="">74.30%/91.52%</a> (teacher: ResNet50_vd)</td>
</tr>
<tr>
<td align="center">ResNet50</td>
<td align="center"><a href="http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar">76.50%/93.00%</a></td>
<td align="center"><a href="">77.40%/93.48%</a> (teacher: ResNet101<sup><a href="#trans2">2</a></sup>)</td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><a name="trans1">[1]</a><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar">ResNet50_vd</a>预训练模型Top-1/Top-5准确率分别为79.12%/94.44%</p>
<p>带_vd后缀代表是开启了Mixup训练,Mixup相关介绍参考<a href="https://arxiv.org/abs/1710.09412">mixup: Beyond Empirical Risk Minimization</a></p>
<p><a name="trans1">[2]</a><a href="https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar">ResNet101</a>预训练模型Top-1/Top-5准确率分别为77.56%/93.64%</p>
</div>
<h3 id="32">3.2 目标检测<a class="headerlink" href="#32" title="Permanent link">#</a></h3>
<p>数据:Pasacl VOC &amp; COCO 2017</p>
<p>评价指标:mAP</p>
<p>输入尺寸:608</p>
<table>
<thead>
<tr>
<th align="center">Model</th>
<th align="center">数据集</th>
<th align="center">baseline</th>
<th align="center">蒸馏后</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">Pasacl VOC</td>
<td align="center"><a href="">76.2</a></td>
<td align="center"><a href="">79.0</a> (teacher: ResNet34-YOLOv3-VOC<sup><a href="#trans3">3</a></sup>)</td>
</tr>
<tr>
<td align="center">MobileNet-V1-YOLOv3</td>
<td align="center">COCO</td>
<td align="center"><a href="https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar">29.3</a></td>
<td align="center"><a href="">31.0</a> (teacher: ResNet34-YOLOv3-COCO<sup><a href="#trans4">4</a></sup>)</td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p><a name="trans1">[3]</a><a href="">ResNet34-YOLOv3-VOC</a>预训练模型的Box AP为82.6</p>
<p><a name="trans1">[4]</a><a href="">ResNet34-YOLOv3-COCO</a>预训练模型的Box AP为36.2</p>
</div>
              
            </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
      
        <a href="../algo/algo/" class="btn btn-neutral" title="算法原理"><span class="icon icon-circle-arrow-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" style="cursor: pointer">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
        <span><a href="../algo/algo/" style="color: #fcfcfc;">&laquo; Previous</a></span>
      
      
    </span>
</div>
    <script>var base_url = '..';</script>
    <script src="../js/theme.js" defer></script>
      <script src="../mathjax-config.js" defer></script>
      <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML" defer></script>
      <script src="../search/main.js" defer></script>

</body>
</html>