layers_old.py 47.8 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
ceci3 已提交
15 16
### NOTE: the API of this file is based on Paddle1.8, the API in layers.py is based on Paddle2.0

C
ceci3 已提交
17 18
import numpy as np
import logging
C
ceci3 已提交
19
import paddle.fluid as fluid
C
ceci3 已提交
20
import paddle.fluid.core as core
C
ceci3 已提交
21 22 23 24
import paddle.fluid.dygraph_utils as dygraph_utils
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid.framework import _varbase_creator
from paddle.fluid.dygraph.nn import InstanceNorm, Conv2D, Conv2DTranspose, BatchNorm
C
ceci3 已提交
25 26 27

from ...common import get_logger
from .utils.utils import compute_start_end, get_same_padding, convert_to_list
28
from .layers_base import *
C
ceci3 已提交
29 30 31

__all__ = [
    'SuperConv2D', 'SuperConv2DTranspose', 'SuperSeparableConv2D',
32 33
    'SuperBatchNorm', 'SuperLinear', 'SuperInstanceNorm', 'SuperGroupConv2D',
    'SuperDepthwiseConv2D', 'SuperGroupConv2DTranspose',
C
ceci3 已提交
34 35 36 37 38 39 40 41
    'SuperDepthwiseConv2DTranspose', 'SuperLayerNorm', 'SuperEmbedding'
]

_logger = get_logger(__name__, level=logging.INFO)

### TODO: if task is elastic width, need to add re_organize_middle_weight in 1x1 conv in MBBlock


C
ceci3 已提交
42
class SuperConv2D(fluid.dygraph.Conv2D):
C
ceci3 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    """
    This interface is used to construct a callable object of the ``SuperConv2D``  class.
    The difference between ```SuperConv2D``` and ```Conv2D``` is: ```SuperConv2D``` need 
    to feed a config dictionary with the format of {'channel', num_of_channel} represents 
    the channels of the outputs, used to change the first dimension of weight and bias, 
    only train the first channels of the weight and bias.

    Note: the channel in config need to less than first defined.

    The super convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \\sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of filter. It is as same as the output
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
C
ceci3 已提交
119
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\\_elem\\_num})^{0.5}`. Default: None.
C
ceci3 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    
    Raises:
        ValueError: if ``use_cudnn`` is not a bool value.
    Examples:
        .. code-block:: python
C
ceci3 已提交
140 141 142
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddleslim.core.layers import SuperConv2D
C
ceci3 已提交
143 144
          import numpy as np
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
C
ceci3 已提交
145 146 147 148 149
          with fluid.dygraph.guard():
              super_conv2d = SuperConv2D(3, 10, 3)
              config = {'channel': 5}
              data = to_variable(data)
              conv = super_conv2d(data, config)
C
ceci3 已提交
150 151 152 153 154

    """

    ### NOTE: filter_size, num_channels and num_filters must be the max of candidate to define a largest network.
    def __init__(self,
C
ceci3 已提交
155 156 157
                 num_channels,
                 num_filters,
                 filter_size,
C
ceci3 已提交
158 159 160 161
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 dilation=1,
C
ceci3 已提交
162 163 164
                 padding=0,
                 groups=None,
                 param_attr=None,
C
ceci3 已提交
165
                 bias_attr=None,
C
ceci3 已提交
166 167 168 169
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
        ### NOTE: padding always is 0, add padding in forward because of kernel size is uncertain
C
ceci3 已提交
170
        super(SuperConv2D, self).__init__(
C
ceci3 已提交
171 172 173 174 175
            num_channels, num_filters, filter_size, stride, padding, dilation,
            groups, param_attr, bias_attr, use_cudnn, act, dtype)

        if isinstance(self._filter_size, int):
            self._filter_size = convert_to_list(self._filter_size, 2)
C
ceci3 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188

        self.candidate_config = candidate_config
        if len(candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))

        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None

        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
189
        self.base_channel = self._num_filters
C
ceci3 已提交
190
        if self.expand_ratio != None:
C
ceci3 已提交
191
            self.base_channel = int(self._num_filters / max(self.expand_ratio))
C
ceci3 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
205
                    attr=fluid.ParamAttr(
C
ceci3 已提交
206
                        name=self._full_name + param_name,
C
ceci3 已提交
207 208
                        initializer=fluid.initializer.NumpyArrayInitializer(
                            np.eye(ks_t))),
C
ceci3 已提交
209 210 211 212 213 214 215
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
Chang Xu 已提交
216 217 218
        ### Unsupport for asymmetric kernels
        if self._filter_size[0] != self._filter_size[1]:
            return self.weight[:out_nc, :in_nc, :, :]
C
ceci3 已提交
219
        start, end = compute_start_end(self._filter_size[0], kernel_size)
C
ceci3 已提交
220 221
        ### if NOT transform kernel, intercept a center filter with kernel_size from largest filter
        filters = self.weight[:out_nc, :in_nc, start:end, start:end]
C
ceci3 已提交
222
        if self.transform_kernel != False and kernel_size < self._filter_size[
C
ceci3 已提交
223 224 225 226 227 228 229 230 231 232
                0]:
            ### if transform kernel, then use matrix to transform
            start_filter = self.weight[:out_nc, :in_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
233
                _input_filter = fluid.layers.reshape(
C
ceci3 已提交
234 235 236
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
C
ceci3 已提交
237
                _tmp_filter = _varbase_creator(dtype=_input_filter.dtype)
C
ceci3 已提交
238 239 240
                core.ops.matmul(_input_filter,
                                self.__getattr__('%dto%d_matrix' %
                                                 (src_ks, target_ks)),
C
ceci3 已提交
241
                                _tmp_filter, 'transpose_X', False,
C
ceci3 已提交
242
                                'transpose_Y', False, "alpha", 1)
C
ceci3 已提交
243 244
                _tmp_filter = fluid.layers.reshape(
                    _tmp_filter,
C
ceci3 已提交
245 246 247
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
C
ceci3 已提交
248
                start_filter = _tmp_filter
C
ceci3 已提交
249 250 251 252
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        if self._groups == 1 or self._groups == None:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._num_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### conv: weight: (Cout, Cin/G, Kh, Kw)
            groups = self._groups
            in_nc = int(in_nc // groups)
            return groups, in_nc, out_nc
C
ceci3 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
287 288
            out_nc = self._num_filters
        ks = int(self._filter_size[0]) if kernel_size == None else int(
C
ceci3 已提交
289 290
            kernel_size)

C
Chang Xu 已提交
291 292 293 294
        if kernel_size is not None and self._filter_size[
                0] != self._filter_size[1]:
            _logger.error("Searching for asymmetric kernels is NOT supported")

C
ceci3 已提交
295 296 297 298 299 300 301 302 303 304
        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)

        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding

C
ceci3 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        if self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', padding, 'dilations',
                     self._dilation, 'groups', groups
                     if groups else 1, 'use_cudnn', self._use_cudnn)
            out = core.ops.conv2d(input, weight, *attrs)
        elif self._l_type == 'depthwise_conv2d':
            attrs = ('strides', self._stride, 'paddings', padding, 'dilations',
                     self._dilation, 'groups', groups
                     if groups else self._groups, 'use_cudnn', self._use_cudnn)
            out = core.ops.depthwise_conv2d(input, weight, *attrs)
        else:
            raise ValueError("conv type error")

        pre_bias = out
        out_nc = int(pre_bias.shape[1])
C
ceci3 已提交
320 321
        if self.bias is not None:
            bias = self.bias[:out_nc]
C
ceci3 已提交
322
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
C
ceci3 已提交
323
        else:
C
ceci3 已提交
324 325 326
            pre_act = pre_bias

        return dygraph_utils._append_activation_in_dygraph(pre_act, self._act)
C
ceci3 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349


class SuperGroupConv2D(SuperConv2D):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### conv: weight: (Cout, Cin/G, Kh, Kw)
        groups = self._groups
        in_nc = int(in_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2D(SuperConv2D):
    ### depthwise convolution
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


C
ceci3 已提交
350
class SuperConv2DTranspose(fluid.dygraph.Conv2DTranspose):
C
ceci3 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    """
    This interface is used to construct a callable object of the ``SuperConv2DTranspose`` 
    class.
    The difference between ```SuperConv2DTranspose``` and ```Conv2DTranspose``` is: 
    ```SuperConv2DTranspose``` need to feed a config dictionary with the format of 
    {'channel', num_of_channel} represents the channels of the outputs, used to change 
    the first dimension of weight and bias, only train the first channels of the weight 
    and bias.

    Note: the channel in config need to less than first defined.

    The super convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
    .. math::
C
ceci3 已提交
377
        Out = \\sigma (W \\ast X + b)
C
ceci3 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
C
ceci3 已提交
393 394 395 396
           H^\\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\\in [ H^\\prime_{out}, H^\\prime_{out} + strides[0] ) \\\\
           W_{out} &\\in [ W^\\prime_{out}, W^\\prime_{out} + strides[1] )
C
ceci3 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        output_size(int or tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    Examples:
       .. code-block:: python
C
ceci3 已提交
452 453
          import paddle.fluid as fluid
          from paddleslim.core.layers import SuperConv2DTranspose
C
ceci3 已提交
454
          import numpy as np
C
ceci3 已提交
455 456 457 458 459
          with fluid.dygraph.guard():
              data = np.random.random((3, 32, 32, 5)).astype('float32')
              config = {'channel': 5
              super_convtranspose = SuperConv2DTranspose(num_channels=32, num_filters=10, filter_size=3)
              ret = super_convtranspose(fluid.dygraph.base.to_variable(data), config)
C
ceci3 已提交
460 461 462
    """

    def __init__(self,
C
ceci3 已提交
463 464 465 466
                 num_channels,
                 num_filters,
                 filter_size,
                 output_size=None,
C
ceci3 已提交
467 468 469 470
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 dilation=1,
C
ceci3 已提交
471 472 473
                 padding=0,
                 groups=None,
                 param_attr=None,
C
ceci3 已提交
474
                 bias_attr=None,
C
ceci3 已提交
475 476 477
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
C
ceci3 已提交
478
        super(SuperConv2DTranspose, self).__init__(
C
ceci3 已提交
479 480 481
            num_channels, num_filters, filter_size, output_size, padding,
            stride, dilation, groups, param_attr, bias_attr, use_cudnn, act,
            dtype)
C
ceci3 已提交
482 483 484 485 486 487
        self.candidate_config = candidate_config
        if len(self.candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))
        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None
C
ceci3 已提交
488 489 490 491

        if isinstance(self._filter_size, int):
            self._filter_size = convert_to_list(self._filter_size, 2)

C
ceci3 已提交
492 493 494 495
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
496
        self.base_channel = self._num_filters
C
ceci3 已提交
497
        if self.expand_ratio:
C
ceci3 已提交
498
            self.base_channel = int(self._num_filters / max(self.expand_ratio))
C
ceci3 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
512
                    attr=fluid.ParamAttr(
C
ceci3 已提交
513
                        name=self._full_name + param_name,
C
ceci3 已提交
514 515
                        initializer=fluid.initializer.NumpyArrayInitializer(
                            np.eye(ks_t))),
C
ceci3 已提交
516 517 518 519 520 521 522
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
Chang Xu 已提交
523 524 525
        ### Unsupport for asymmetric kernels
        if self._filter_size[0] != self._filter_size[1]:
            return self.weight[:out_nc, :in_nc, :, :]
C
ceci3 已提交
526
        start, end = compute_start_end(self._filter_size[0], kernel_size)
C
ceci3 已提交
527
        filters = self.weight[:in_nc, :out_nc, start:end, start:end]
C
ceci3 已提交
528
        if self.transform_kernel != False and kernel_size < self._filter_size[
C
ceci3 已提交
529 530 531 532 533 534 535 536 537
                0]:
            start_filter = self.weight[:in_nc, :out_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
538
                _input_filter = fluid.layers.reshape(
C
ceci3 已提交
539 540 541
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
C
ceci3 已提交
542
                _tmp_filter = _varbase_creator(dtype=_input_filter.dtype)
C
ceci3 已提交
543 544 545
                core.ops.matmul(_input_filter,
                                self.__getattr__('%dto%d_matrix' %
                                                 (src_ks, target_ks)),
C
ceci3 已提交
546
                                _tmp_filter, 'transpose_X', False,
C
ceci3 已提交
547
                                'transpose_Y', False, "alpha", 1)
C
ceci3 已提交
548 549
                _tmp_filter = fluid.layers.reshape(
                    _tmp_filter,
C
ceci3 已提交
550 551 552
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
C
ceci3 已提交
553
                start_filter = _tmp_filter
C
ceci3 已提交
554 555 556 557
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
        if self._groups == 1 or self._groups == None:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._num_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
            groups = self._groups
            out_nc = int(out_nc // groups)
            return groups, in_nc, out_nc

    def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):
C
ceci3 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
592
            out_nc = self._num_filters
C
ceci3 已提交
593

C
ceci3 已提交
594
        ks = int(self._filter_size[0]) if kernel_size == None else int(
C
ceci3 已提交
595 596
            kernel_size)

C
Chang Xu 已提交
597 598 599 600
        if kernel_size is not None and self._filter_size[
                0] != self._filter_size[1]:
            _logger.error("Searching for asymmetric kernels is NOT supported")

C
ceci3 已提交
601 602 603 604 605 606 607 608 609
        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding

C
ceci3 已提交
610 611 612 613 614 615
        op = getattr(core.ops, self._op_type)
        out = op(input, weight, 'output_size', self._output_size, 'strides',
                 self._stride, 'paddings', padding, 'dilations', self._dilation,
                 'groups', groups, 'use_cudnn', self._use_cudnn)
        pre_bias = out
        out_nc = int(pre_bias.shape[1])
C
ceci3 已提交
616 617
        if self.bias is not None:
            bias = self.bias[:out_nc]
C
ceci3 已提交
618
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
C
ceci3 已提交
619
        else:
C
ceci3 已提交
620 621 622 623
            pre_act = pre_bias

        return dygraph_utils._append_activation_in_dygraph(
            pre_act, act=self._act)
C
ceci3 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646


class SuperGroupConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
        groups = self._groups
        out_nc = int(out_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv transpose is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


### NOTE: only search channel, write for GAN-compression, maybe change to SuperDepthwiseConv and SuperConv after.
C
ceci3 已提交
647
class SuperSeparableConv2D(fluid.dygraph.Layer):
C
ceci3 已提交
648 649 650 651 652 653 654 655 656
    """
    This interface is used to construct a callable object of the ``SuperSeparableConv2D``
    class.
    The difference between ```SuperSeparableConv2D``` and ```SeparableConv2D``` is: 
    ```SuperSeparableConv2D``` need to feed a config dictionary with the format of 
    {'channel', num_of_channel} represents the channels of the first conv's outputs and
    the second conv's inputs, used to change the first dimension of weight and bias, 
    only train the first channels of the weight and bias.

C
ceci3 已提交
657 658
    The architecture of super separable convolution2D op is [Conv2D, norm layer(may be BatchNorm
    or InstanceNorm), Conv2D]. The first conv is depthwise conv, the filter number is input channel
C
ceci3 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
    multiply scale_factor, the group is equal to the number of input channel. The second conv
    is standard conv, which filter size and stride size are 1. 

    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the second conv's filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The first conv's filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        padding(int or tuple, optional): The first conv's padding size. If padding is a tuple, 
            it must contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The first conv's stride size. If stride is a tuple,
            it must contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The first conv's dilation size. If dilation is a tuple, 
            it must contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
ceci3 已提交
678
        norm_layer(class): The normalization layer between two convolution. Default: InstanceNorm.
C
ceci3 已提交
679 680 681 682 683 684
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of convolution.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, convolution
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        scale_factor(float): The scale factor of the first conv's output channel. Default: 1.
C
ceci3 已提交
685 686
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
C
ceci3 已提交
687 688 689 690 691
    Returns:
        None
    """

    def __init__(self,
C
ceci3 已提交
692 693 694
                 num_channels,
                 num_filters,
                 filter_size,
C
ceci3 已提交
695 696 697 698
                 candidate_config={},
                 stride=1,
                 padding=0,
                 dilation=1,
C
ceci3 已提交
699
                 norm_layer=InstanceNorm,
C
ceci3 已提交
700
                 bias_attr=None,
C
ceci3 已提交
701 702
                 scale_factor=1,
                 use_cudnn=False):
C
ceci3 已提交
703
        super(SuperSeparableConv2D, self).__init__()
C
ceci3 已提交
704 705 706 707 708
        self.conv = fluid.dygraph.LayerList([
            fluid.dygraph.nn.Conv2D(
                num_channels=num_channels,
                num_filters=num_channels * scale_factor,
                filter_size=filter_size,
C
ceci3 已提交
709 710
                stride=stride,
                padding=padding,
C
ceci3 已提交
711 712
                use_cudnn=False,
                groups=num_channels,
C
ceci3 已提交
713 714 715
                bias_attr=bias_attr)
        ])

C
ceci3 已提交
716
        self.conv.extend([norm_layer(num_channels * scale_factor)])
C
ceci3 已提交
717 718

        self.conv.extend([
C
ceci3 已提交
719 720 721 722
            fluid.dygraph.nn.Conv2D(
                num_channels=num_channels * scale_factor,
                num_filters=num_filters,
                filter_size=1,
C
ceci3 已提交
723
                stride=1,
C
ceci3 已提交
724
                use_cudnn=use_cudnn,
C
ceci3 已提交
725 726 727 728 729 730
                bias_attr=bias_attr)
        ])

        self.candidate_config = candidate_config
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
731
        self.base_output_dim = self.conv[0]._num_filters
C
ceci3 已提交
732
        if self.expand_ratio != None:
C
ceci3 已提交
733
            self.base_output_dim = int(self.conv[0]._num_filters /
C
ceci3 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746
                                       max(self.expand_ratio))

    def forward(self, input, expand_ratio=None, channel=None):
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
747
            out_nc = self.conv[0]._num_filters
C
ceci3 已提交
748 749 750

        weight = self.conv[0].weight[:in_nc]
        ###  conv1
C
ceci3 已提交
751 752 753 754 755 756 757 758 759 760 761 762 763 764
        if self.conv[0]._l_type == 'conv2d':
            attrs = ('strides', self.conv[0]._stride, 'paddings',
                     self.conv[0]._padding, 'dilations', self.conv[0]._dilation,
                     'groups', in_nc, 'use_cudnn', self.conv[0]._use_cudnn)
            out = core.ops.conv2d(input, weight, *attrs)
        elif self.conv[0]._l_type == 'depthwise_conv2d':
            attrs = ('strides', self.conv[0]._stride, 'paddings',
                     self.conv[0]._padding, 'dilations', self.conv[0]._dilation,
                     'groups', in_nc, 'use_cudnn', self.conv[0]._use_cudnn)
            out = core.ops.depthwise_conv2d(input, weight, *attrs)
        else:
            raise ValueError("conv type error")

        pre_bias = out
C
ceci3 已提交
765 766
        if self.conv[0].bias is not None:
            bias = self.conv[0].bias[:in_nc]
C
ceci3 已提交
767
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
C
ceci3 已提交
768
        else:
C
ceci3 已提交
769 770 771 772
            pre_act = pre_bias

        conv0_out = dygraph_utils._append_activation_in_dygraph(
            pre_act, self.conv[0]._act)
C
ceci3 已提交
773 774 775 776 777

        norm_out = self.conv[1](conv0_out)

        weight = self.conv[2].weight[:out_nc, :in_nc, :, :]

C
ceci3 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
        if self.conv[2]._l_type == 'conv2d':
            attrs = ('strides', self.conv[2]._stride, 'paddings',
                     self.conv[2]._padding, 'dilations', self.conv[2]._dilation,
                     'groups', self.conv[2]._groups if self.conv[2]._groups else
                     1, 'use_cudnn', self.conv[2]._use_cudnn)
            out = core.ops.conv2d(norm_out, weight, *attrs)
        elif self.conv[2]._l_type == 'depthwise_conv2d':
            attrs = ('strides', self.conv[2]._stride, 'paddings',
                     self.conv[2]._padding, 'dilations', self.conv[2]._dilation,
                     'groups', self.conv[2]._groups, 'use_cudnn',
                     self.conv[2]._use_cudnn)
            out = core.ops.depthwise_conv2d(norm_out, weight, *attrs)
        else:
            raise ValueError("conv type error")

        pre_bias = out
C
ceci3 已提交
794 795
        if self.conv[2].bias is not None:
            bias = self.conv[2].bias[:out_nc]
C
ceci3 已提交
796
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
C
ceci3 已提交
797
        else:
C
ceci3 已提交
798 799 800 801 802
            pre_act = pre_bias

        conv1_out = dygraph_utils._append_activation_in_dygraph(
            pre_act, self.conv[2]._act)

C
ceci3 已提交
803 804 805
        return conv1_out


C
ceci3 已提交
806
class SuperLinear(fluid.dygraph.Linear):
C
ceci3 已提交
807 808 809 810
    """
    """

    def __init__(self,
C
ceci3 已提交
811 812
                 input_dim,
                 output_dim,
C
ceci3 已提交
813
                 candidate_config={},
C
ceci3 已提交
814
                 param_attr=None,
C
ceci3 已提交
815
                 bias_attr=None,
C
ceci3 已提交
816 817 818 819 820
                 act=None,
                 dtype="float32"):
        super(SuperLinear, self).__init__(input_dim, output_dim, param_attr,
                                          bias_attr, act, dtype)
        self._param_attr = param_attr
C
ceci3 已提交
821
        self._bias_attr = bias_attr
C
ceci3 已提交
822
        self.output_dim = output_dim
C
ceci3 已提交
823 824 825
        self.candidate_config = candidate_config
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
826
        self.base_output_dim = self.output_dim
C
ceci3 已提交
827
        if self.expand_ratio != None:
C
ceci3 已提交
828
            self.base_output_dim = int(self.output_dim / max(self.expand_ratio))
C
ceci3 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841

    def forward(self, input, expand_ratio=None, channel=None):
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
        ### weight: (Cin, Cout)
        in_nc = int(input.shape[-1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
842
            out_nc = self.output_dim
C
ceci3 已提交
843 844 845 846

        weight = self.weight[:in_nc, :out_nc]
        if self._bias_attr != False:
            bias = self.bias[:out_nc]
C
ceci3 已提交
847 848 849 850 851 852 853 854
            use_bias = True

        pre_bias = _varbase_creator(dtype=input.dtype)
        core.ops.matmul(input, weight, pre_bias, 'transpose_X', False,
                        'transpose_Y', False, "alpha", 1)
        if self._bias_attr != False:
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, bias, axis=len(input.shape) - 1)
C
ceci3 已提交
855
        else:
C
ceci3 已提交
856
            pre_act = pre_bias
C
ceci3 已提交
857

C
ceci3 已提交
858
        return dygraph_utils._append_activation_in_dygraph(pre_act, self._act)
C
ceci3 已提交
859 860


C
ceci3 已提交
861
class SuperBatchNorm(fluid.dygraph.BatchNorm):
C
ceci3 已提交
862 863 864 865 866
    """
    add comment
    """

    def __init__(self,
C
ceci3 已提交
867 868 869
                 num_channels,
                 act=None,
                 is_test=False,
C
ceci3 已提交
870 871
                 momentum=0.9,
                 epsilon=1e-05,
C
ceci3 已提交
872
                 param_attr=None,
C
ceci3 已提交
873
                 bias_attr=None,
C
ceci3 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886
                 dtype='float32',
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=True,
                 use_global_stats=False,
                 trainable_statistics=False):
        super(SuperBatchNorm, self).__init__(
            num_channels, act, is_test, momentum, epsilon, param_attr,
            bias_attr, dtype, data_layout, in_place, moving_mean_name,
            moving_variance_name, do_model_average_for_mean_and_var,
            use_global_stats, trainable_statistics)
C
ceci3 已提交
887 888 889 890 891 892 893 894 895

    def forward(self, input):
        feature_dim = int(input.shape[1])

        weight = self.weight[:feature_dim]
        bias = self.bias[:feature_dim]
        mean = self._mean[:feature_dim]
        variance = self._variance[:feature_dim]

C
ceci3 已提交
896 897 898 899
        mean_out = self._mean
        variance_out = self._variance
        mean_out_tmp = mean
        variance_out_tmp = variance
C
ceci3 已提交
900 901 902 903 904 905

        attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                 "is_test", not self.training, "data_layout", self._data_layout,
                 "use_mkldnn", False, "fuse_with_relu", self._fuse_with_relu,
                 "use_global_stats", self._use_global_stats,
                 'trainable_statistics', self._trainable_statistics)
C
Chang Xu 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
        try:
            from paddle import _C_ops
            from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
            if in_dygraph_mode():
                if feature_dim != self._mean.shape[0]:
                    batch_norm_out = _C_ops.final_state_batch_norm(
                        input, weight, bias, mean, variance, mean_out_tmp,
                        variance_out_tmp, *attrs)
                    self._mean[:feature_dim] = mean
                    self._variance[:feature_dim] = variance
                    mean_out[:feature_dim] = mean_out_tmp
                    variance_out[:feature_dim] = variance_out_tmp
                else:
                    batch_norm_out = core.ops.batch_norm(
                        input, weight, bias, self._mean, self._variance,
                        mean_out, variance_out, *attrs)
            elif _in_legacy_dygraph():
                if feature_dim != self._mean.shape[0]:
                    batch_norm_out = core.ops.batch_norm(
                        input, weight, bias, mean, variance, None, mean_out_tmp,
                        variance_out_tmp, *attrs)
                    self._mean[:feature_dim].set_value(mean)
                    self._variance[:feature_dim].set_value(variance)
                    mean_out[:feature_dim].set_value(mean_out_tmp)
                    variance_out[:feature_dim].set_value(variance_out_tmp)
                else:
                    batch_norm_out = core.ops.batch_norm(
                        input, weight, bias, self._mean, self._variance, None,
                        mean_out, variance_out, *attrs)
        except:
            if feature_dim != self._mean.shape[0]:
                batch_norm_out = core.ops.batch_norm(input, weight, bias, mean,
                                                     variance, mean_out_tmp,
                                                     variance_out_tmp, *attrs)
                self._mean[:feature_dim].set_value(mean)
                self._variance[:feature_dim].set_value(variance)
                mean_out[:feature_dim].set_value(mean_out_tmp)
                variance_out[:feature_dim].set_value(variance_out_tmp)
            else:
                batch_norm_out = core.ops.batch_norm(
                    input, weight, bias, self._mean, self._variance, mean_out,
                    variance_out, *attrs)
C
ceci3 已提交
948

C
ceci3 已提交
949
        return dygraph_utils._append_activation_in_dygraph(
C
ceci3 已提交
950
            batch_norm_out[0], act=self._act)
C
ceci3 已提交
951 952


C
ceci3 已提交
953
class SuperInstanceNorm(fluid.dygraph.InstanceNorm):
C
ceci3 已提交
954 955 956 957
    """
    """

    def __init__(self,
C
ceci3 已提交
958
                 num_channels,
C
ceci3 已提交
959
                 epsilon=1e-05,
C
ceci3 已提交
960
                 param_attr=None,
C
ceci3 已提交
961
                 bias_attr=None,
C
ceci3 已提交
962 963 964
                 dtype='float32'):
        super(SuperInstanceNorm, self).__init__(num_channels, epsilon,
                                                param_attr, bias_attr, dtype)
C
ceci3 已提交
965 966 967

    def forward(self, input):
        feature_dim = int(input.shape[1])
C
ceci3 已提交
968 969

        if self._param_attr == False and self._bias_attr == False:
C
ceci3 已提交
970 971 972 973 974 975
            scale = None
            bias = None
        else:
            scale = self.scale[:feature_dim]
            bias = self.bias[:feature_dim]

C
ceci3 已提交
976 977 978
        out, _, _ = core.ops.instance_norm(input, scale, bias, 'epsilon',
                                           self._epsilon)
        return out
C
ceci3 已提交
979 980


C
ceci3 已提交
981
class SuperLayerNorm(fluid.dygraph.LayerNorm):
C
ceci3 已提交
982 983
    def __init__(self,
                 normalized_shape,
C
ceci3 已提交
984 985
                 scale=True,
                 shift=True,
C
ceci3 已提交
986
                 epsilon=1e-05,
C
ceci3 已提交
987
                 param_attr=None,
C
ceci3 已提交
988
                 bias_attr=None,
C
ceci3 已提交
989 990 991 992 993
                 act=None,
                 dtype='float32'):
        super(SuperLayerNorm,
              self).__init__(normalized_shape, scale, shift, epsilon,
                             param_attr, bias_attr, act, dtype)
C
ceci3 已提交
994 995

    def forward(self, input):
C
ceci3 已提交
996 997
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
C
ceci3 已提交
998
        normalized_ndim = len(self._normalized_shape)
C
ceci3 已提交
999 1000 1001
        self._begin_norm_axis = input_ndim - normalized_ndim

        ### TODO(ceci3): fix if normalized_shape is not a single number
C
ceci3 已提交
1002
        feature_dim = int(input.shape[-1])
C
ceci3 已提交
1003 1004 1005 1006 1007 1008 1009
        weight = self.weight[:feature_dim]
        bias = self.bias[:feature_dim]
        pre_act, _, _ = core.ops.layer_norm(input, weight, bias, 'epsilon',
                                            self._epsilon, 'begin_norm_axis',
                                            self._begin_norm_axis)
        return dygraph_utils._append_activation_in_dygraph(
            pre_act, act=self._act)
C
ceci3 已提交
1010 1011


C
ceci3 已提交
1012
class SuperEmbedding(fluid.dygraph.Embedding):
C
ceci3 已提交
1013
    def __init__(self,
C
ceci3 已提交
1014
                 size,
C
ceci3 已提交
1015
                 candidate_config={},
C
ceci3 已提交
1016 1017
                 is_sparse=False,
                 is_distributed=False,
C
ceci3 已提交
1018
                 padding_idx=None,
C
ceci3 已提交
1019 1020 1021 1022
                 param_attr=None,
                 dtype='float32'):
        super(SuperEmbedding, self).__init__(size, is_sparse, is_distributed,
                                             padding_idx, param_attr, dtype)
C
ceci3 已提交
1023 1024 1025
        self.candidate_config = candidate_config
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
1026
        self.base_output_dim = self._size[-1]
C
ceci3 已提交
1027
        if self.expand_ratio != None:
C
ceci3 已提交
1028
            self.base_output_dim = int(self._size[-1] / max(self.expand_ratio))
C
ceci3 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

    def forward(self, input, expand_ratio=None, channel=None):
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
1039
            out_nc = self._size[-1]
C
ceci3 已提交
1040 1041

        weight = self.weight[:, :out_nc]
C
ceci3 已提交
1042 1043 1044 1045
        return core.ops.lookup_table_v2(
            weight, input, 'is_sparse', self._is_sparse, 'is_distributed',
            self._is_distributed, 'remote_prefetch', self._remote_prefetch,
            'padding_idx', self._padding_idx)