layers_old.py 45.5 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
ceci3 已提交
15 16
### NOTE: the API of this file is based on Paddle1.8, the API in layers.py is based on Paddle2.0

C
ceci3 已提交
17 18
import numpy as np
import logging
C
ceci3 已提交
19
import paddle.fluid as fluid
C
ceci3 已提交
20
import paddle.fluid.core as core
C
ceci3 已提交
21 22 23 24
import paddle.fluid.dygraph_utils as dygraph_utils
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid.framework import _varbase_creator
from paddle.fluid.dygraph.nn import InstanceNorm, Conv2D, Conv2DTranspose, BatchNorm
C
ceci3 已提交
25 26 27

from ...common import get_logger
from .utils.utils import compute_start_end, get_same_padding, convert_to_list
28
from .layers_base import *
C
ceci3 已提交
29 30 31

__all__ = [
    'SuperConv2D', 'SuperConv2DTranspose', 'SuperSeparableConv2D',
32 33
    'SuperBatchNorm', 'SuperLinear', 'SuperInstanceNorm', 'SuperGroupConv2D',
    'SuperDepthwiseConv2D', 'SuperGroupConv2DTranspose',
C
ceci3 已提交
34 35 36 37 38 39 40 41
    'SuperDepthwiseConv2DTranspose', 'SuperLayerNorm', 'SuperEmbedding'
]

_logger = get_logger(__name__, level=logging.INFO)

### TODO: if task is elastic width, need to add re_organize_middle_weight in 1x1 conv in MBBlock


C
ceci3 已提交
42
class SuperConv2D(fluid.dygraph.Conv2D):
C
ceci3 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    """
    This interface is used to construct a callable object of the ``SuperConv2D``  class.
    The difference between ```SuperConv2D``` and ```Conv2D``` is: ```SuperConv2D``` need 
    to feed a config dictionary with the format of {'channel', num_of_channel} represents 
    the channels of the outputs, used to change the first dimension of weight and bias, 
    only train the first channels of the weight and bias.

    Note: the channel in config need to less than first defined.

    The super convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:
    .. math::
        Out = \\sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of filter. It is as same as the output
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    
    Raises:
        ValueError: if ``use_cudnn`` is not a bool value.
    Examples:
        .. code-block:: python
C
ceci3 已提交
140 141 142
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddleslim.core.layers import SuperConv2D
C
ceci3 已提交
143 144
          import numpy as np
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
C
ceci3 已提交
145 146 147 148 149
          with fluid.dygraph.guard():
              super_conv2d = SuperConv2D(3, 10, 3)
              config = {'channel': 5}
              data = to_variable(data)
              conv = super_conv2d(data, config)
C
ceci3 已提交
150 151 152 153 154

    """

    ### NOTE: filter_size, num_channels and num_filters must be the max of candidate to define a largest network.
    def __init__(self,
C
ceci3 已提交
155 156 157
                 num_channels,
                 num_filters,
                 filter_size,
C
ceci3 已提交
158 159 160 161
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 dilation=1,
C
ceci3 已提交
162 163 164
                 padding=0,
                 groups=None,
                 param_attr=None,
C
ceci3 已提交
165
                 bias_attr=None,
C
ceci3 已提交
166 167 168 169
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
        ### NOTE: padding always is 0, add padding in forward because of kernel size is uncertain
C
ceci3 已提交
170
        super(SuperConv2D, self).__init__(
C
ceci3 已提交
171 172 173 174 175
            num_channels, num_filters, filter_size, stride, padding, dilation,
            groups, param_attr, bias_attr, use_cudnn, act, dtype)

        if isinstance(self._filter_size, int):
            self._filter_size = convert_to_list(self._filter_size, 2)
C
ceci3 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188

        self.candidate_config = candidate_config
        if len(candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))

        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None

        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
189
        self.base_channel = self._num_filters
C
ceci3 已提交
190
        if self.expand_ratio != None:
C
ceci3 已提交
191
            self.base_channel = int(self._num_filters / max(self.expand_ratio))
C
ceci3 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
205
                    attr=fluid.ParamAttr(
C
ceci3 已提交
206
                        name=self._full_name + param_name,
C
ceci3 已提交
207 208
                        initializer=fluid.initializer.NumpyArrayInitializer(
                            np.eye(ks_t))),
C
ceci3 已提交
209 210 211 212 213 214 215
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
ceci3 已提交
216
        start, end = compute_start_end(self._filter_size[0], kernel_size)
C
ceci3 已提交
217 218
        ### if NOT transform kernel, intercept a center filter with kernel_size from largest filter
        filters = self.weight[:out_nc, :in_nc, start:end, start:end]
C
ceci3 已提交
219
        if self.transform_kernel != False and kernel_size < self._filter_size[
C
ceci3 已提交
220 221 222 223 224 225 226 227 228 229
                0]:
            ### if transform kernel, then use matrix to transform
            start_filter = self.weight[:out_nc, :in_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
230
                _input_filter = fluid.layers.reshape(
C
ceci3 已提交
231 232 233
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
C
ceci3 已提交
234
                _tmp_filter = _varbase_creator(dtype=_input_filter.dtype)
C
ceci3 已提交
235 236 237
                core.ops.matmul(_input_filter,
                                self.__getattr__('%dto%d_matrix' %
                                                 (src_ks, target_ks)),
C
ceci3 已提交
238
                                _tmp_filter, 'transpose_X', False,
C
ceci3 已提交
239
                                'transpose_Y', False, "alpha", 1)
C
ceci3 已提交
240 241
                _tmp_filter = fluid.layers.reshape(
                    _tmp_filter,
C
ceci3 已提交
242 243 244
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
C
ceci3 已提交
245
                start_filter = _tmp_filter
C
ceci3 已提交
246 247 248 249
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        if self._groups == 1 or self._groups == None:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._num_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### conv: weight: (Cout, Cin/G, Kh, Kw)
            groups = self._groups
            in_nc = int(in_nc // groups)
            return groups, in_nc, out_nc
C
ceci3 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

    def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
284 285
            out_nc = self._num_filters
        ks = int(self._filter_size[0]) if kernel_size == None else int(
C
ceci3 已提交
286 287 288 289 290 291 292 293 294 295 296 297
            kernel_size)

        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)

        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding

C
ceci3 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        if self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', padding, 'dilations',
                     self._dilation, 'groups', groups
                     if groups else 1, 'use_cudnn', self._use_cudnn)
            out = core.ops.conv2d(input, weight, *attrs)
        elif self._l_type == 'depthwise_conv2d':
            attrs = ('strides', self._stride, 'paddings', padding, 'dilations',
                     self._dilation, 'groups', groups
                     if groups else self._groups, 'use_cudnn', self._use_cudnn)
            out = core.ops.depthwise_conv2d(input, weight, *attrs)
        else:
            raise ValueError("conv type error")

        pre_bias = out
        out_nc = int(pre_bias.shape[1])
C
ceci3 已提交
313 314
        if self.bias is not None:
            bias = self.bias[:out_nc]
C
ceci3 已提交
315
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
C
ceci3 已提交
316
        else:
C
ceci3 已提交
317 318 319
            pre_act = pre_bias

        return dygraph_utils._append_activation_in_dygraph(pre_act, self._act)
C
ceci3 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342


class SuperGroupConv2D(SuperConv2D):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### conv: weight: (Cout, Cin/G, Kh, Kw)
        groups = self._groups
        in_nc = int(in_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2D(SuperConv2D):
    ### depthwise convolution
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


C
ceci3 已提交
343
class SuperConv2DTranspose(fluid.dygraph.Conv2DTranspose):
C
ceci3 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    """
    This interface is used to construct a callable object of the ``SuperConv2DTranspose`` 
    class.
    The difference between ```SuperConv2DTranspose``` and ```Conv2DTranspose``` is: 
    ```SuperConv2DTranspose``` need to feed a config dictionary with the format of 
    {'channel', num_of_channel} represents the channels of the outputs, used to change 
    the first dimension of weight and bias, only train the first channels of the weight 
    and bias.

    Note: the channel in config need to less than first defined.

    The super convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
    For each input :math:`X`, the equation is:
    .. math::
        Out = \sigma (W \\ast X + b)
    Where:
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
    Example:
        - Input:
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
        - Output:
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
        Where
        .. math::
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
            such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of 
            this layer can be choose from (3, 5, 7), the key of candidate_config
            only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
            CANNOT be set at the same time. Default: None.
        transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
            to a small filter. Default: False.
        output_size(int or tuple, optional): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None.
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.
    Returns:
        None
    Examples:
       .. code-block:: python
C
ceci3 已提交
445 446
          import paddle.fluid as fluid
          from paddleslim.core.layers import SuperConv2DTranspose
C
ceci3 已提交
447
          import numpy as np
C
ceci3 已提交
448 449 450 451 452
          with fluid.dygraph.guard():
              data = np.random.random((3, 32, 32, 5)).astype('float32')
              config = {'channel': 5
              super_convtranspose = SuperConv2DTranspose(num_channels=32, num_filters=10, filter_size=3)
              ret = super_convtranspose(fluid.dygraph.base.to_variable(data), config)
C
ceci3 已提交
453 454 455
    """

    def __init__(self,
C
ceci3 已提交
456 457 458 459
                 num_channels,
                 num_filters,
                 filter_size,
                 output_size=None,
C
ceci3 已提交
460 461 462 463
                 candidate_config={},
                 transform_kernel=False,
                 stride=1,
                 dilation=1,
C
ceci3 已提交
464 465 466
                 padding=0,
                 groups=None,
                 param_attr=None,
C
ceci3 已提交
467
                 bias_attr=None,
C
ceci3 已提交
468 469 470
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
C
ceci3 已提交
471
        super(SuperConv2DTranspose, self).__init__(
C
ceci3 已提交
472 473 474
            num_channels, num_filters, filter_size, output_size, padding,
            stride, dilation, groups, param_attr, bias_attr, use_cudnn, act,
            dtype)
C
ceci3 已提交
475 476 477 478 479 480
        self.candidate_config = candidate_config
        if len(self.candidate_config.items()) != 0:
            for k, v in candidate_config.items():
                candidate_config[k] = list(set(v))
        self.ks_set = candidate_config[
            'kernel_size'] if 'kernel_size' in candidate_config else None
C
ceci3 已提交
481 482 483 484

        if isinstance(self._filter_size, int):
            self._filter_size = convert_to_list(self._filter_size, 2)

C
ceci3 已提交
485 486 487 488
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
        self.channel = candidate_config[
            'channel'] if 'channel' in candidate_config else None
C
ceci3 已提交
489
        self.base_channel = self._num_filters
C
ceci3 已提交
490
        if self.expand_ratio:
C
ceci3 已提交
491
            self.base_channel = int(self._num_filters / max(self.expand_ratio))
C
ceci3 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504

        self.transform_kernel = transform_kernel
        if self.ks_set != None:
            self.ks_set.sort()
        if self.transform_kernel != False:
            scale_param = dict()
            ### create parameter to transform kernel
            for i in range(len(self.ks_set) - 1):
                ks_small = self.ks_set[i]
                ks_large = self.ks_set[i + 1]
                param_name = '%dto%d_matrix' % (ks_large, ks_small)
                ks_t = ks_small**2
                scale_param[param_name] = self.create_parameter(
C
ceci3 已提交
505
                    attr=fluid.ParamAttr(
C
ceci3 已提交
506
                        name=self._full_name + param_name,
C
ceci3 已提交
507 508
                        initializer=fluid.initializer.NumpyArrayInitializer(
                            np.eye(ks_t))),
C
ceci3 已提交
509 510 511 512 513 514 515
                    shape=(ks_t, ks_t),
                    dtype=self._dtype)

            for name, param in scale_param.items():
                setattr(self, name, param)

    def get_active_filter(self, in_nc, out_nc, kernel_size):
C
ceci3 已提交
516
        start, end = compute_start_end(self._filter_size[0], kernel_size)
C
ceci3 已提交
517
        filters = self.weight[:in_nc, :out_nc, start:end, start:end]
C
ceci3 已提交
518
        if self.transform_kernel != False and kernel_size < self._filter_size[
C
ceci3 已提交
519 520 521 522 523 524 525 526 527
                0]:
            start_filter = self.weight[:in_nc, :out_nc, :, :]
            for i in range(len(self.ks_set) - 1, 0, -1):
                src_ks = self.ks_set[i]
                if src_ks <= kernel_size:
                    break
                target_ks = self.ks_set[i - 1]
                start, end = compute_start_end(src_ks, target_ks)
                _input_filter = start_filter[:, :, start:end, start:end]
C
ceci3 已提交
528
                _input_filter = fluid.layers.reshape(
C
ceci3 已提交
529 530 531
                    _input_filter,
                    shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
                           -1])
C
ceci3 已提交
532
                _tmp_filter = _varbase_creator(dtype=_input_filter.dtype)
C
ceci3 已提交
533 534 535
                core.ops.matmul(_input_filter,
                                self.__getattr__('%dto%d_matrix' %
                                                 (src_ks, target_ks)),
C
ceci3 已提交
536
                                _tmp_filter, 'transpose_X', False,
C
ceci3 已提交
537
                                'transpose_Y', False, "alpha", 1)
C
ceci3 已提交
538 539
                _tmp_filter = fluid.layers.reshape(
                    _tmp_filter,
C
ceci3 已提交
540 541 542
                    shape=[
                        filters.shape[0], filters.shape[1], target_ks, target_ks
                    ])
C
ceci3 已提交
543
                start_filter = _tmp_filter
C
ceci3 已提交
544 545 546 547
            filters = start_filter
        return filters

    def get_groups_in_out_nc(self, in_nc, out_nc):
C
ceci3 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        if self._groups == 1 or self._groups == None:
            ### standard conv
            return self._groups, in_nc, out_nc
        elif self._groups == self._num_channels:
            ### depthwise convolution
            if in_nc != out_nc:
                _logger.debug(
                    "input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                    format(in_nc, out_nc))
            groups = in_nc
            out_nc = in_nc
            return groups, in_nc, out_nc
        else:
            ### groups convolution
            ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
            groups = self._groups
            out_nc = int(out_nc // groups)
            return groups, in_nc, out_nc

    def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):
C
ceci3 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581
        self.cur_config = {
            'kernel_size': kernel_size,
            'expand_ratio': expand_ratio,
            'channel': channel
        }
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_channel)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
582
            out_nc = self._num_filters
C
ceci3 已提交
583

C
ceci3 已提交
584
        ks = int(self._filter_size[0]) if kernel_size == None else int(
C
ceci3 已提交
585 586 587 588 589 590 591 592 593 594 595
            kernel_size)

        groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
                                                                        out_nc)

        weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
        if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
            padding = convert_to_list(get_same_padding(ks), 2)
        else:
            padding = self._padding

C
ceci3 已提交
596 597 598 599 600 601
        op = getattr(core.ops, self._op_type)
        out = op(input, weight, 'output_size', self._output_size, 'strides',
                 self._stride, 'paddings', padding, 'dilations', self._dilation,
                 'groups', groups, 'use_cudnn', self._use_cudnn)
        pre_bias = out
        out_nc = int(pre_bias.shape[1])
C
ceci3 已提交
602 603
        if self.bias is not None:
            bias = self.bias[:out_nc]
C
ceci3 已提交
604
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
C
ceci3 已提交
605
        else:
C
ceci3 已提交
606 607 608 609
            pre_act = pre_bias

        return dygraph_utils._append_activation_in_dygraph(
            pre_act, act=self._act)
C
ceci3 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632


class SuperGroupConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        ### groups convolution
        ### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
        groups = self._groups
        out_nc = int(out_nc // groups)
        return groups, in_nc, out_nc


class SuperDepthwiseConv2DTranspose(SuperConv2DTranspose):
    def get_groups_in_out_nc(self, in_nc, out_nc):
        if in_nc != out_nc:
            _logger.debug(
                "input channel and output channel in depthwise conv transpose is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
                format(in_nc, out_nc))
        groups = in_nc
        out_nc = in_nc
        return groups, in_nc, out_nc


### NOTE: only search channel, write for GAN-compression, maybe change to SuperDepthwiseConv and SuperConv after.
C
ceci3 已提交
633
class SuperSeparableConv2D(fluid.dygraph.Layer):
C
ceci3 已提交
634 635 636 637 638 639 640 641 642
    """
    This interface is used to construct a callable object of the ``SuperSeparableConv2D``
    class.
    The difference between ```SuperSeparableConv2D``` and ```SeparableConv2D``` is: 
    ```SuperSeparableConv2D``` need to feed a config dictionary with the format of 
    {'channel', num_of_channel} represents the channels of the first conv's outputs and
    the second conv's inputs, used to change the first dimension of weight and bias, 
    only train the first channels of the weight and bias.

C
ceci3 已提交
643 644
    The architecture of super separable convolution2D op is [Conv2D, norm layer(may be BatchNorm
    or InstanceNorm), Conv2D]. The first conv is depthwise conv, the filter number is input channel
C
ceci3 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    multiply scale_factor, the group is equal to the number of input channel. The second conv
    is standard conv, which filter size and stride size are 1. 

    Parameters:
        num_channels(int): The number of channels in the input image.
        num_filters(int): The number of the second conv's filter. It is as same as the output
            feature map.
        filter_size(int or tuple): The first conv's filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        padding(int or tuple, optional): The first conv's padding size. If padding is a tuple, 
            it must contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The first conv's stride size. If stride is a tuple,
            it must contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The first conv's dilation size. If dilation is a tuple, 
            it must contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
ceci3 已提交
664
        norm_layer(class): The normalization layer between two convolution. Default: InstanceNorm.
C
ceci3 已提交
665 666 667 668 669 670
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of convolution.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, convolution
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        scale_factor(float): The scale factor of the first conv's output channel. Default: 1.
C
ceci3 已提交
671 672
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
C
ceci3 已提交
673 674 675 676 677
    Returns:
        None
    """

    def __init__(self,
C
ceci3 已提交
678 679 680
                 num_channels,
                 num_filters,
                 filter_size,
C
ceci3 已提交
681 682 683 684
                 candidate_config={},
                 stride=1,
                 padding=0,
                 dilation=1,
C
ceci3 已提交
685
                 norm_layer=InstanceNorm,
C
ceci3 已提交
686
                 bias_attr=None,
C
ceci3 已提交
687 688
                 scale_factor=1,
                 use_cudnn=False):
C
ceci3 已提交
689
        super(SuperSeparableConv2D, self).__init__()
C
ceci3 已提交
690 691 692 693 694
        self.conv = fluid.dygraph.LayerList([
            fluid.dygraph.nn.Conv2D(
                num_channels=num_channels,
                num_filters=num_channels * scale_factor,
                filter_size=filter_size,
C
ceci3 已提交
695 696
                stride=stride,
                padding=padding,
C
ceci3 已提交
697 698
                use_cudnn=False,
                groups=num_channels,
C
ceci3 已提交
699 700 701
                bias_attr=bias_attr)
        ])

C
ceci3 已提交
702
        self.conv.extend([norm_layer(num_channels * scale_factor)])
C
ceci3 已提交
703 704

        self.conv.extend([
C
ceci3 已提交
705 706 707 708
            fluid.dygraph.nn.Conv2D(
                num_channels=num_channels * scale_factor,
                num_filters=num_filters,
                filter_size=1,
C
ceci3 已提交
709
                stride=1,
C
ceci3 已提交
710
                use_cudnn=use_cudnn,
C
ceci3 已提交
711 712 713 714 715 716
                bias_attr=bias_attr)
        ])

        self.candidate_config = candidate_config
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
717
        self.base_output_dim = self.conv[0]._num_filters
C
ceci3 已提交
718
        if self.expand_ratio != None:
C
ceci3 已提交
719
            self.base_output_dim = int(self.conv[0]._num_filters /
C
ceci3 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732
                                       max(self.expand_ratio))

    def forward(self, input, expand_ratio=None, channel=None):
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
        in_nc = int(input.shape[1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
733
            out_nc = self.conv[0]._num_filters
C
ceci3 已提交
734 735 736

        weight = self.conv[0].weight[:in_nc]
        ###  conv1
C
ceci3 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750
        if self.conv[0]._l_type == 'conv2d':
            attrs = ('strides', self.conv[0]._stride, 'paddings',
                     self.conv[0]._padding, 'dilations', self.conv[0]._dilation,
                     'groups', in_nc, 'use_cudnn', self.conv[0]._use_cudnn)
            out = core.ops.conv2d(input, weight, *attrs)
        elif self.conv[0]._l_type == 'depthwise_conv2d':
            attrs = ('strides', self.conv[0]._stride, 'paddings',
                     self.conv[0]._padding, 'dilations', self.conv[0]._dilation,
                     'groups', in_nc, 'use_cudnn', self.conv[0]._use_cudnn)
            out = core.ops.depthwise_conv2d(input, weight, *attrs)
        else:
            raise ValueError("conv type error")

        pre_bias = out
C
ceci3 已提交
751 752
        if self.conv[0].bias is not None:
            bias = self.conv[0].bias[:in_nc]
C
ceci3 已提交
753
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
C
ceci3 已提交
754
        else:
C
ceci3 已提交
755 756 757 758
            pre_act = pre_bias

        conv0_out = dygraph_utils._append_activation_in_dygraph(
            pre_act, self.conv[0]._act)
C
ceci3 已提交
759 760 761 762 763

        norm_out = self.conv[1](conv0_out)

        weight = self.conv[2].weight[:out_nc, :in_nc, :, :]

C
ceci3 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
        if self.conv[2]._l_type == 'conv2d':
            attrs = ('strides', self.conv[2]._stride, 'paddings',
                     self.conv[2]._padding, 'dilations', self.conv[2]._dilation,
                     'groups', self.conv[2]._groups if self.conv[2]._groups else
                     1, 'use_cudnn', self.conv[2]._use_cudnn)
            out = core.ops.conv2d(norm_out, weight, *attrs)
        elif self.conv[2]._l_type == 'depthwise_conv2d':
            attrs = ('strides', self.conv[2]._stride, 'paddings',
                     self.conv[2]._padding, 'dilations', self.conv[2]._dilation,
                     'groups', self.conv[2]._groups, 'use_cudnn',
                     self.conv[2]._use_cudnn)
            out = core.ops.depthwise_conv2d(norm_out, weight, *attrs)
        else:
            raise ValueError("conv type error")

        pre_bias = out
C
ceci3 已提交
780 781
        if self.conv[2].bias is not None:
            bias = self.conv[2].bias[:out_nc]
C
ceci3 已提交
782
            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
C
ceci3 已提交
783
        else:
C
ceci3 已提交
784 785 786 787 788
            pre_act = pre_bias

        conv1_out = dygraph_utils._append_activation_in_dygraph(
            pre_act, self.conv[2]._act)

C
ceci3 已提交
789 790 791
        return conv1_out


C
ceci3 已提交
792
class SuperLinear(fluid.dygraph.Linear):
C
ceci3 已提交
793 794 795 796
    """
    """

    def __init__(self,
C
ceci3 已提交
797 798
                 input_dim,
                 output_dim,
C
ceci3 已提交
799
                 candidate_config={},
C
ceci3 已提交
800
                 param_attr=None,
C
ceci3 已提交
801
                 bias_attr=None,
C
ceci3 已提交
802 803 804 805 806
                 act=None,
                 dtype="float32"):
        super(SuperLinear, self).__init__(input_dim, output_dim, param_attr,
                                          bias_attr, act, dtype)
        self._param_attr = param_attr
C
ceci3 已提交
807
        self._bias_attr = bias_attr
C
ceci3 已提交
808
        self.output_dim = output_dim
C
ceci3 已提交
809 810 811
        self.candidate_config = candidate_config
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
812
        self.base_output_dim = self.output_dim
C
ceci3 已提交
813
        if self.expand_ratio != None:
C
ceci3 已提交
814
            self.base_output_dim = int(self.output_dim / max(self.expand_ratio))
C
ceci3 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827

    def forward(self, input, expand_ratio=None, channel=None):
        self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
        ### weight: (Cin, Cout)
        in_nc = int(input.shape[-1])
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
828
            out_nc = self.output_dim
C
ceci3 已提交
829 830 831 832

        weight = self.weight[:in_nc, :out_nc]
        if self._bias_attr != False:
            bias = self.bias[:out_nc]
C
ceci3 已提交
833 834 835 836 837 838 839 840
            use_bias = True

        pre_bias = _varbase_creator(dtype=input.dtype)
        core.ops.matmul(input, weight, pre_bias, 'transpose_X', False,
                        'transpose_Y', False, "alpha", 1)
        if self._bias_attr != False:
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, bias, axis=len(input.shape) - 1)
C
ceci3 已提交
841
        else:
C
ceci3 已提交
842
            pre_act = pre_bias
C
ceci3 已提交
843

C
ceci3 已提交
844
        return dygraph_utils._append_activation_in_dygraph(pre_act, self._act)
C
ceci3 已提交
845 846


C
ceci3 已提交
847
class SuperBatchNorm(fluid.dygraph.BatchNorm):
C
ceci3 已提交
848 849 850 851 852
    """
    add comment
    """

    def __init__(self,
C
ceci3 已提交
853 854 855
                 num_channels,
                 act=None,
                 is_test=False,
C
ceci3 已提交
856 857
                 momentum=0.9,
                 epsilon=1e-05,
C
ceci3 已提交
858
                 param_attr=None,
C
ceci3 已提交
859
                 bias_attr=None,
C
ceci3 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872
                 dtype='float32',
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=True,
                 use_global_stats=False,
                 trainable_statistics=False):
        super(SuperBatchNorm, self).__init__(
            num_channels, act, is_test, momentum, epsilon, param_attr,
            bias_attr, dtype, data_layout, in_place, moving_mean_name,
            moving_variance_name, do_model_average_for_mean_and_var,
            use_global_stats, trainable_statistics)
C
ceci3 已提交
873 874 875 876 877 878 879 880 881

    def forward(self, input):
        feature_dim = int(input.shape[1])

        weight = self.weight[:feature_dim]
        bias = self.bias[:feature_dim]
        mean = self._mean[:feature_dim]
        variance = self._variance[:feature_dim]

C
ceci3 已提交
882 883 884 885
        mean_out = self._mean
        variance_out = self._variance
        mean_out_tmp = mean
        variance_out_tmp = variance
C
ceci3 已提交
886 887 888 889 890 891

        attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
                 "is_test", not self.training, "data_layout", self._data_layout,
                 "use_mkldnn", False, "fuse_with_relu", self._fuse_with_relu,
                 "use_global_stats", self._use_global_stats,
                 'trainable_statistics', self._trainable_statistics)
C
ceci3 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905

        if feature_dim != self._mean.shape[0]:
            batch_norm_out = core.ops.batch_norm(input, weight, bias, mean,
                                                 variance, mean_out_tmp,
                                                 variance_out_tmp, *attrs)
            self._mean[:feature_dim] = mean
            self._variance[:feature_dim] = variance
            mean_out[:feature_dim] = mean_out_tmp
            variance_out[:feature_dim] = variance_out_tmp
        else:
            batch_norm_out = core.ops.batch_norm(input, weight, bias,
                                                 self._mean, self._variance,
                                                 mean_out, variance_out, *attrs)

C
ceci3 已提交
906
        return dygraph_utils._append_activation_in_dygraph(
C
ceci3 已提交
907
            batch_norm_out[0], act=self._act)
C
ceci3 已提交
908 909


C
ceci3 已提交
910
class SuperInstanceNorm(fluid.dygraph.InstanceNorm):
C
ceci3 已提交
911 912 913 914
    """
    """

    def __init__(self,
C
ceci3 已提交
915
                 num_channels,
C
ceci3 已提交
916
                 epsilon=1e-05,
C
ceci3 已提交
917
                 param_attr=None,
C
ceci3 已提交
918
                 bias_attr=None,
C
ceci3 已提交
919 920 921
                 dtype='float32'):
        super(SuperInstanceNorm, self).__init__(num_channels, epsilon,
                                                param_attr, bias_attr, dtype)
C
ceci3 已提交
922 923 924

    def forward(self, input):
        feature_dim = int(input.shape[1])
C
ceci3 已提交
925 926

        if self._param_attr == False and self._bias_attr == False:
C
ceci3 已提交
927 928 929 930 931 932
            scale = None
            bias = None
        else:
            scale = self.scale[:feature_dim]
            bias = self.bias[:feature_dim]

C
ceci3 已提交
933 934 935
        out, _, _ = core.ops.instance_norm(input, scale, bias, 'epsilon',
                                           self._epsilon)
        return out
C
ceci3 已提交
936 937


C
ceci3 已提交
938
class SuperLayerNorm(fluid.dygraph.LayerNorm):
C
ceci3 已提交
939 940
    def __init__(self,
                 normalized_shape,
C
ceci3 已提交
941 942
                 scale=True,
                 shift=True,
C
ceci3 已提交
943
                 epsilon=1e-05,
C
ceci3 已提交
944
                 param_attr=None,
C
ceci3 已提交
945
                 bias_attr=None,
C
ceci3 已提交
946 947 948 949 950
                 act=None,
                 dtype='float32'):
        super(SuperLayerNorm,
              self).__init__(normalized_shape, scale, shift, epsilon,
                             param_attr, bias_attr, act, dtype)
C
ceci3 已提交
951 952

    def forward(self, input):
C
ceci3 已提交
953 954
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
C
ceci3 已提交
955
        normalized_ndim = len(self._normalized_shape)
C
ceci3 已提交
956 957 958
        self._begin_norm_axis = input_ndim - normalized_ndim

        ### TODO(ceci3): fix if normalized_shape is not a single number
C
ceci3 已提交
959
        feature_dim = int(input.shape[-1])
C
ceci3 已提交
960 961 962 963 964 965 966
        weight = self.weight[:feature_dim]
        bias = self.bias[:feature_dim]
        pre_act, _, _ = core.ops.layer_norm(input, weight, bias, 'epsilon',
                                            self._epsilon, 'begin_norm_axis',
                                            self._begin_norm_axis)
        return dygraph_utils._append_activation_in_dygraph(
            pre_act, act=self._act)
C
ceci3 已提交
967 968


C
ceci3 已提交
969
class SuperEmbedding(fluid.dygraph.Embedding):
C
ceci3 已提交
970
    def __init__(self,
C
ceci3 已提交
971
                 size,
C
ceci3 已提交
972
                 candidate_config={},
C
ceci3 已提交
973 974
                 is_sparse=False,
                 is_distributed=False,
C
ceci3 已提交
975
                 padding_idx=None,
C
ceci3 已提交
976 977 978 979
                 param_attr=None,
                 dtype='float32'):
        super(SuperEmbedding, self).__init__(size, is_sparse, is_distributed,
                                             padding_idx, param_attr, dtype)
C
ceci3 已提交
980 981 982
        self.candidate_config = candidate_config
        self.expand_ratio = candidate_config[
            'expand_ratio'] if 'expand_ratio' in candidate_config else None
C
ceci3 已提交
983
        self.base_output_dim = self._size[-1]
C
ceci3 已提交
984
        if self.expand_ratio != None:
C
ceci3 已提交
985
            self.base_output_dim = int(self._size[-1] / max(self.expand_ratio))
C
ceci3 已提交
986 987 988 989 990 991 992 993 994 995

    def forward(self, input, expand_ratio=None, channel=None):
        assert (
            expand_ratio == None or channel == None
        ), "expand_ratio and channel CANNOT be NOT None at the same time."
        if expand_ratio != None:
            out_nc = int(expand_ratio * self.base_output_dim)
        elif channel != None:
            out_nc = int(channel)
        else:
C
ceci3 已提交
996
            out_nc = self._size[-1]
C
ceci3 已提交
997 998

        weight = self.weight[:, :out_nc]
C
ceci3 已提交
999 1000 1001 1002
        return core.ops.lookup_table_v2(
            weight, input, 'is_sparse', self._is_sparse, 'is_distributed',
            self._is_distributed, 'remote_prefetch', self._remote_prefetch,
            'padding_idx', self._padding_idx)