run.py 4.2 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import numpy as np
import argparse
G
Guanghua Yu 已提交
19
from tqdm import tqdm
G
Guanghua Yu 已提交
20
import paddle
21
from paddleslim.common import load_config as load_slim_config
G
Guanghua Yu 已提交
22
from paddleslim.auto_compression import AutoCompression
G
Guanghua Yu 已提交
23 24
from dataset import COCOValDataset, COCOTrainDataset
from post_process import YOLOv6PostProcess, coco_metric
G
Guanghua Yu 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        '--config_path',
        type=str,
        default=None,
        help="path of compression strategy config.",
        required=True)
    parser.add_argument(
        '--save_dir',
        type=str,
        default='output',
        help="directory to save compressed model.")
    parser.add_argument(
        '--devices',
        type=str,
        default='gpu',
        help="which device used to compress.")
    parser.add_argument(
        '--eval', type=bool, default=False, help="whether to run evaluation.")

    return parser


def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
G
Guanghua Yu 已提交
52 53 54 55 56 57 58 59 60 61 62 63
    bboxes_list, bbox_nums_list, image_id_list = [], [], []
    with tqdm(
            total=len(val_loader),
            bar_format='Evaluation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80) as t:
        for data in val_loader:
            data_all = {k: np.array(v) for k, v in data.items()}
            outs = exe.run(compiled_test_program,
                           feed={test_feed_names[0]: data_all['image']},
                           fetch_list=test_fetch_list,
                           return_numpy=False)
            res = {}
G
Guanghua Yu 已提交
64 65 66
            postprocess = YOLOv6PostProcess(
                score_threshold=0.001, nms_threshold=0.65, multi_label=True)
            res = postprocess(np.array(outs[0]), data_all['scale_factor'])
G
Guanghua Yu 已提交
67 68 69 70 71 72
            bboxes_list.append(res['bbox'])
            bbox_nums_list.append(res['bbox_num'])
            image_id_list.append(np.array(data_all['im_id']))
            t.update()
    map_res = coco_metric(anno_file, bboxes_list, bbox_nums_list, image_id_list)
    return map_res[0]
G
Guanghua Yu 已提交
73 74 75 76 77


def main():
    global global_config
    all_config = load_slim_config(FLAGS.config_path)
78 79
    assert "Global" in all_config, "Key 'Global' not found in config file. \n{}".format(
        all_config)
G
Guanghua Yu 已提交
80 81
    global_config = all_config["Global"]

G
Guanghua Yu 已提交
82 83 84 85 86 87
    dataset = COCOTrainDataset(
        dataset_dir=global_config['dataset_dir'],
        image_dir=global_config['train_image_dir'],
        anno_path=global_config['train_anno_path'])
    train_loader = paddle.io.DataLoader(
        dataset, batch_size=1, shuffle=True, drop_last=True, num_workers=0)
G
Guanghua Yu 已提交
88 89 90 91 92

    if 'Evaluation' in global_config.keys() and global_config[
            'Evaluation'] and paddle.distributed.get_rank() == 0:
        eval_func = eval_function
        global val_loader
G
Guanghua Yu 已提交
93 94 95 96 97 98 99 100 101 102 103 104
        dataset = COCOValDataset(
            dataset_dir=global_config['dataset_dir'],
            image_dir=global_config['val_image_dir'],
            anno_path=global_config['val_anno_path'])
        global anno_file
        anno_file = dataset.ann_file
        val_loader = paddle.io.DataLoader(
            dataset,
            batch_size=1,
            shuffle=False,
            drop_last=False,
            num_workers=0)
G
Guanghua Yu 已提交
105 106 107 108 109
    else:
        eval_func = None

    ac = AutoCompression(
        model_dir=global_config["model_dir"],
110
        train_dataloader=train_loader,
G
Guanghua Yu 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        save_dir=FLAGS.save_dir,
        config=all_config,
        eval_callback=eval_func)
    ac.compress()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()

    assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
    paddle.set_device(FLAGS.devices)

    main()