train_search.py 9.6 KB
Newer Older
B
Bai Yifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

__all__ = ['DARTSearch']

import logging
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from ...common import AvgrageMeter, get_logger
from .architect import Architect
27
from .get_genotype import get_genotype
B
Bai Yifan 已提交
28 29 30 31
logger = get_logger(__name__, level=logging.INFO)


def count_parameters_in_MB(all_params):
B
Bai Yifan 已提交
32 33 34 35 36 37 38 39
    """Count the parameters in the target list.
    Args:
        all_params(list): List of Variables.

    Returns:
        float: The total count(MB) of target parameter list.
    """

B
Bai Yifan 已提交
40 41 42 43 44 45 46 47
    parameters_number = 0
    for param in all_params:
        if param.trainable and 'aux' not in param.name:
            parameters_number += np.prod(param.shape)
    return parameters_number / 1e6


class DARTSearch(object):
B
Bai Yifan 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    """Used for Differentiable ARchiTecture Search(DARTS)

    Args:
        model(Paddle DyGraph model): Super Network for Search.
        train_reader(Python Generator): Generator to provide training data.
        valid_reader(Python Generator): Generator to provide validation  data.
        place(fluid.CPUPlace()|fluid.CUDAPlace(N)): This parameter represents the executor run on which device.
        learning_rate(float): Model parameter initial learning rate. Default: 0.025.
        batch_size(int): Minibatch size. Default: 64.
        arch_learning_rate(float): Learning rate for arch encoding. Default: 3e-4.
        unrolled(bool): Use one-step unrolled validation loss. Default: False.
        num_epochs(int): Epoch number. Default: 50.
        epochs_no_archopt(int): Epochs skip architecture optimize at begining. Default: 0.
        use_data_parallel(bool): Whether to use data parallel mode. Default: False.
        log_freq(int): Log frequency. Default: 50.

    """

B
Bai Yifan 已提交
66 67 68 69 70 71 72 73 74 75
    def __init__(self,
                 model,
                 train_reader,
                 valid_reader,
                 learning_rate=0.025,
                 batchsize=64,
                 num_imgs=50000,
                 arch_learning_rate=3e-4,
                 unrolled='False',
                 num_epochs=50,
76
                 epochs_no_archopt=0,
B
Bai Yifan 已提交
77 78 79 80 81 82 83 84 85 86 87
                 use_gpu=True,
                 use_data_parallel=False,
                 log_freq=50):
        self.model = model
        self.train_reader = train_reader
        self.valid_reader = valid_reader
        self.learning_rate = learning_rate
        self.batchsize = batchsize
        self.num_imgs = num_imgs
        self.arch_learning_rate = arch_learning_rate
        self.unrolled = unrolled
88
        self.epochs_no_archopt = epochs_no_archopt
B
Bai Yifan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        self.num_epochs = num_epochs
        self.use_gpu = use_gpu
        self.use_data_parallel = use_data_parallel
        if not self.use_gpu:
            self.place = fluid.CPUPlace()
        elif not self.use_data_parallel:
            self.place = fluid.CUDAPlace(0)
        else:
            self.place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id)
        self.log_freq = log_freq

    def train_one_epoch(self, train_loader, valid_loader, architect, optimizer,
                        epoch):
        objs = AvgrageMeter()
        top1 = AvgrageMeter()
        top5 = AvgrageMeter()
        self.model.train()

        for step_id, (
                train_data,
                valid_data) in enumerate(zip(train_loader(), valid_loader())):
            train_image, train_label = train_data
            valid_image, valid_label = valid_data
            train_image = to_variable(train_image)
            train_label = to_variable(train_label)
            train_label.stop_gradient = True
            valid_image = to_variable(valid_image)
            valid_label = to_variable(valid_label)
            valid_label.stop_gradient = True
            n = train_image.shape[0]

120
            if epoch >= self.epochs_no_archopt:
B
Bai Yifan 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
                architect.step(train_image, train_label, valid_image,
                               valid_label)

            logits = self.model(train_image)
            prec1 = fluid.layers.accuracy(input=logits, label=train_label, k=1)
            prec5 = fluid.layers.accuracy(input=logits, label=train_label, k=5)
            loss = fluid.layers.reduce_mean(
                fluid.layers.softmax_with_cross_entropy(logits, train_label))

            if self.use_data_parallel:
                loss = self.model.scale_loss(loss)
                loss.backward()
                self.model.apply_collective_grads()
            else:
                loss.backward()

137
            optimizer.minimize(loss)
B
Bai Yifan 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            self.model.clear_gradients()

            objs.update(loss.numpy(), n)
            top1.update(prec1.numpy(), n)
            top5.update(prec5.numpy(), n)

            if step_id % self.log_freq == 0:
                logger.info(
                    "Train Epoch {}, Step {}, loss {:.6f}, acc_1 {:.6f}, acc_5 {:.6f}".
                    format(epoch, step_id, objs.avg[0], top1.avg[0], top5.avg[
                        0]))
        return top1.avg[0]

    def valid_one_epoch(self, valid_loader, epoch):
        objs = AvgrageMeter()
        top1 = AvgrageMeter()
        top5 = AvgrageMeter()
        self.model.eval()

        for step_id, (image, label) in enumerate(valid_loader):
            image = to_variable(image)
            label = to_variable(label)
            n = image.shape[0]
            logits = self.model(image)
            prec1 = fluid.layers.accuracy(input=logits, label=label, k=1)
            prec5 = fluid.layers.accuracy(input=logits, label=label, k=5)
            loss = fluid.layers.reduce_mean(
                fluid.layers.softmax_with_cross_entropy(logits, label))
            objs.update(loss.numpy(), n)
            top1.update(prec1.numpy(), n)
            top5.update(prec5.numpy(), n)

            if step_id % self.log_freq == 0:
                logger.info(
                    "Valid Epoch {}, Step {}, loss {:.6f}, acc_1 {:.6f}, acc_5 {:.6f}".
                    format(epoch, step_id, objs.avg[0], top1.avg[0], top5.avg[
                        0]))
        return top1.avg[0]

    def train(self):
B
Bai Yifan 已提交
178 179 180 181
        """Start search process.

        """

B
Bai Yifan 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194
        if self.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context()
        model_parameters = [
            p for p in self.model.parameters()
            if p.name not in [a.name for a in self.model.arch_parameters()]
        ]
        logger.info("param size = {:.6f}MB".format(
            count_parameters_in_MB(model_parameters)))
        step_per_epoch = int(self.num_imgs * 0.5 / self.batchsize)
        if self.unrolled:
            step_per_epoch *= 2
        learning_rate = fluid.dygraph.CosineDecay(
            self.learning_rate, step_per_epoch, self.num_epochs)
195 196

        clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
B
Bai Yifan 已提交
197 198 199 200
        optimizer = fluid.optimizer.MomentumOptimizer(
            learning_rate,
            0.9,
            regularization=fluid.regularizer.L2DecayRegularizer(3e-4),
201 202
            parameter_list=model_parameters,
            grad_clip=clip)
B
Bai Yifan 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

        if self.use_data_parallel:
            self.model = fluid.dygraph.parallel.DataParallel(self.model,
                                                             strategy)
            self.train_reader = fluid.contrib.reader.distributed_batch_reader(
                self.train_reader)
            self.valid_reader = fluid.contrib.reader.distributed_batch_reader(
                self.valid_reader)

        train_loader = fluid.io.DataLoader.from_generator(
            capacity=64,
            use_double_buffer=True,
            iterable=True,
            return_list=True)
        valid_loader = fluid.io.DataLoader.from_generator(
            capacity=64,
            use_double_buffer=True,
            iterable=True,
            return_list=True)

        train_loader.set_batch_generator(self.train_reader, places=self.place)
        valid_loader.set_batch_generator(self.valid_reader, places=self.place)

        architect = Architect(self.model, learning_rate,
                              self.arch_learning_rate, self.place,
                              self.unrolled)

        save_parameters = (not self.use_data_parallel) or (
            self.use_data_parallel and
            fluid.dygraph.parallel.Env().local_rank == 0)

        for epoch in range(self.num_epochs):
            logger.info('Epoch {}, lr {:.6f}'.format(
                epoch, optimizer.current_step_lr()))
237
            genotype = get_genotype(self.model)
B
Bai Yifan 已提交
238 239 240 241 242 243 244 245 246 247 248 249
            logger.info('genotype = %s', genotype)

            train_top1 = self.train_one_epoch(train_loader, valid_loader,
                                              architect, optimizer, epoch)
            logger.info("Epoch {}, train_acc {:.6f}".format(epoch, train_top1))

            if epoch == self.num_epochs - 1:
                valid_top1 = self.valid_one_epoch(valid_loader, epoch)
                logger.info("Epoch {}, valid_acc {:.6f}".format(epoch,
                                                                valid_top1))
            if save_parameters:
                fluid.save_dygraph(self.model.state_dict(), "./weights")