index.html 26.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="shortcut icon" href="../../img/favicon.ico">
11
  <title>模型分析 - PaddleSlim Docs</title>
12 13 14 15 16
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
17
  <link href="../../extra.css" rel="stylesheet">
18 19 20
  
  <script>
    // Current page data
21
    var mkdocs_page_name = "\u6a21\u578b\u5206\u6790";
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    var mkdocs_page_input_path = "api/analysis_api.md";
    var mkdocs_page_url = null;
  </script>
  
  <script src="../../js/jquery-2.1.1.min.js" defer></script>
  <script src="../../js/modernizr-2.8.3.min.js" defer></script>
  <script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
      <div class="wy-side-nav-search">
        <a href="../.." class="icon icon-home"> PaddleSlim Docs</a>
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
	<ul class="current">
	  
          
            <li class="toctree-l1">
		
    <a class="" href="../..">Home</a>
	    </li>
          
            <li class="toctree-l1">
		
59 60 61 62 63
    <a class="" href="../../model_zoo/">模型库</a>
	    </li>
          
            <li class="toctree-l1">
		
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    <span class="caption-text">教程</span>
    <ul class="subnav">
                <li class="">
                    
    <a class="" href="../../tutorials/quant_post_demo/">离线量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../../tutorials/quant_aware_demo/">量化训练</a>
                </li>
                <li class="">
                    
    <a class="" href="../../tutorials/quant_embedding_demo/">Embedding量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../../tutorials/nas_demo/">SA搜索</a>
                </li>
                <li class="">
                    
84
    <a class="" href="../../search_space/">搜索空间</a>
85 86 87
                </li>
                <li class="">
                    
88 89 90 91 92 93 94
    <a class="" href="../../tutorials/distillation_demo/">知识蒸馏</a>
                </li>
    </ul>
	    </li>
          
            <li class="toctree-l1">
		
95 96 97 98 99 100 101 102
    <span class="caption-text">API</span>
    <ul class="subnav">
                <li class="">
                    
    <a class="" href="../quantization_api/">量化</a>
                </li>
                <li class="">
                    
103
    <a class="" href="../prune_api/">剪枝与敏感度</a>
104 105 106
                </li>
                <li class=" current">
                    
107
    <a class="current" href="./">模型分析</a>
108 109
    <ul class="subnav">
            
110
    <li class="toctree-l3"><a href="#flops">FLOPs</a></li>
111
    
112 113 114 115 116

    <li class="toctree-l3"><a href="#model_size">model_size</a></li>
    

    <li class="toctree-l3"><a href="#tablelatencyevaluator">TableLatencyEvaluator</a></li>
117 118 119 120 121 122
    

    </ul>
                </li>
                <li class="">
                    
123
    <a class="" href="../single_distiller_api/">知识蒸馏</a>
124 125 126 127 128 129 130
                </li>
                <li class="">
                    
    <a class="" href="../nas_api/">SA搜索</a>
                </li>
                <li class="">
                    
131 132
    <a class="" href="../../table_latency/">硬件延时评估表</a>
                </li>
133 134 135
    </ul>
	    </li>
          
136 137 138 139 140
            <li class="toctree-l1">
		
    <a class="" href="../../algo/algo/">算法原理</a>
	    </li>
          
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        </ul>
      </div>
      &nbsp;
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../..">PaddleSlim Docs</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="../..">Docs</a> &raquo;</li>
    
      
        
          <li>API &raquo;</li>
        
      
    
167
    <li>模型分析</li>
168 169
    <li class="wy-breadcrumbs-aside">
      
170
        <a href="https://github.com/PaddlePaddle/PaddleSlim/edit/master/docs/api/analysis_api.md"
171 172 173 174 175 176 177 178 179
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
180 181
                <h2 id="flops">FLOPs<a class="headerlink" href="#flops" title="Permanent link">#</a></h2>
<dl>
182
<dt>paddleslim.analysis.flops(program, detail=False) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/flops.py">源代码</a></dt>
183 184 185 186
<dd>
<p>获得指定网络的浮点运算次数(FLOPs)。</p>
</dd>
</dl>
187 188 189
<p><strong>参数:</strong></p>
<ul>
<li>
190 191 192 193
<p><strong>program(paddle.fluid.Program)</strong> - 待分析的目标网络。更多关于Program的介绍请参考:<a href="https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/Program_cn.html#program">Program概念介绍</a></p>
</li>
<li>
<p><strong>detail(bool)</strong> - 是否返回每个卷积层的FLOPs。默认为False。</p>
194 195
</li>
<li>
196
<p><strong>only_conv(bool)</strong> - 如果设置为True,则仅计算卷积层和全连接层的FLOPs,即浮点数的乘加(multiplication-adds)操作次数。如果设置为False,则也会计算卷积和全连接层之外的操作的FLOPs。</p>
197 198 199 200 201
</li>
</ul>
<p><strong>返回值:</strong></p>
<ul>
<li>
202
<p><strong>flops(float)</strong> - 整个网络的FLOPs。</p>
203 204
</li>
<li>
205
<p><strong>params2flops(dict)</strong> - 每层卷积对应的FLOPs,其中key为卷积层参数名称,value为FLOPs值。</p>
206 207 208
</li>
</ul>
<p><strong>示例:</strong></p>
209
<div class="codehilite"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="k">as</span> <span class="nn">fluid</span>
210 211
<span class="kn">from</span> <span class="nn">paddle.fluid.param_attr</span> <span class="kn">import</span> <span class="n">ParamAttr</span>
<span class="kn">from</span> <span class="nn">paddleslim.analysis</span> <span class="kn">import</span> <span class="n">flops</span>
212

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
<span class="k">def</span> <span class="nf">conv_bn_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span>
                  <span class="n">num_filters</span><span class="p">,</span>
                  <span class="n">filter_size</span><span class="p">,</span>
                  <span class="n">name</span><span class="p">,</span>
                  <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">act</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
    <span class="n">conv</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span>
        <span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
        <span class="n">num_filters</span><span class="o">=</span><span class="n">num_filters</span><span class="p">,</span>
        <span class="n">filter_size</span><span class="o">=</span><span class="n">filter_size</span><span class="p">,</span>
        <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
        <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="n">filter_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
        <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
        <span class="n">act</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_weights&quot;</span><span class="p">),</span>
        <span class="n">bias_attr</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
        <span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_out&quot;</span><span class="p">)</span>
    <span class="n">bn_name</span> <span class="o">=</span> <span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_bn&quot;</span>
    <span class="k">return</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">batch_norm</span><span class="p">(</span>
        <span class="nb">input</span><span class="o">=</span><span class="n">conv</span><span class="p">,</span>
        <span class="n">act</span><span class="o">=</span><span class="n">act</span><span class="p">,</span>
        <span class="n">name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_output&#39;</span><span class="p">,</span>
        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_scale&#39;</span><span class="p">),</span>
        <span class="n">bias_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_offset&#39;</span><span class="p">),</span>
        <span class="n">moving_mean_name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_mean&#39;</span><span class="p">,</span>
        <span class="n">moving_variance_name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_variance&#39;</span><span class="p">,</span> <span class="p">)</span>
240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
<span class="n">main_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="n">startup_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="c1">#   X       X              O       X              O</span>
<span class="c1"># conv1--&gt;conv2--&gt;sum1--&gt;conv3--&gt;conv4--&gt;sum2--&gt;conv5--&gt;conv6</span>
<span class="c1">#     |            ^ |                    ^</span>
<span class="c1">#     |____________| |____________________|</span>
<span class="c1">#</span>
<span class="c1"># X: prune output channels</span>
<span class="c1"># O: prune input channels</span>
<span class="k">with</span> <span class="n">fluid</span><span class="o">.</span><span class="n">program_guard</span><span class="p">(</span><span class="n">main_program</span><span class="p">,</span> <span class="n">startup_program</span><span class="p">):</span>
    <span class="nb">input</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;image&quot;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">16</span><span class="p">])</span>
    <span class="n">conv1</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv1&quot;</span><span class="p">)</span>
    <span class="n">conv2</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv2&quot;</span><span class="p">)</span>
    <span class="n">sum1</span> <span class="o">=</span> <span class="n">conv1</span> <span class="o">+</span> <span class="n">conv2</span>
    <span class="n">conv3</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">sum1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv3&quot;</span><span class="p">)</span>
    <span class="n">conv4</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv3</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv4&quot;</span><span class="p">)</span>
    <span class="n">sum2</span> <span class="o">=</span> <span class="n">conv4</span> <span class="o">+</span> <span class="n">sum1</span>
    <span class="n">conv5</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">sum2</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv5&quot;</span><span class="p">)</span>
    <span class="n">conv6</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv5</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv6&quot;</span><span class="p">)</span>
260

261
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;FLOPs: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">flops</span><span class="p">(</span><span class="n">main_program</span><span class="p">)))</span>
262 263 264
</pre></div>

<h2 id="model_size">model_size<a class="headerlink" href="#model_size" title="Permanent link">#</a></h2>
265
<p>paddleslim.analysis.model_size(program) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/model_size.py">源代码</a></p>
266 267 268
<p>获得指定网络的参数数量。</p>
<p><strong>参数:</strong></p>
<ul>
269
<li><strong>program(paddle.fluid.Program)</strong> - 待分析的目标网络。更多关于Program的介绍请参考:<a href="https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/Program_cn.html#program">Program概念介绍</a></li>
270 271 272
</ul>
<p><strong>返回值:</strong></p>
<ul>
273
<li><strong>model_size(int)</strong> - 整个网络的参数数量。</li>
274 275
</ul>
<p><strong>示例:</strong></p>
276
<div class="codehilite"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="k">as</span> <span class="nn">fluid</span>
277 278
<span class="kn">from</span> <span class="nn">paddle.fluid.param_attr</span> <span class="kn">import</span> <span class="n">ParamAttr</span>
<span class="kn">from</span> <span class="nn">paddleslim.analysis</span> <span class="kn">import</span> <span class="n">model_size</span>
279

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
<span class="k">def</span> <span class="nf">conv_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span>
                  <span class="n">num_filters</span><span class="p">,</span>
                  <span class="n">filter_size</span><span class="p">,</span>
                  <span class="n">name</span><span class="p">,</span>
                  <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">act</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
    <span class="n">conv</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span>
        <span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
        <span class="n">num_filters</span><span class="o">=</span><span class="n">num_filters</span><span class="p">,</span>
        <span class="n">filter_size</span><span class="o">=</span><span class="n">filter_size</span><span class="p">,</span>
        <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
        <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="n">filter_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
        <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
        <span class="n">act</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_weights&quot;</span><span class="p">),</span>
        <span class="n">bias_attr</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
        <span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_out&quot;</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">conv</span>
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
<span class="n">main_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="n">startup_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="c1">#   X       X              O       X              O</span>
<span class="c1"># conv1--&gt;conv2--&gt;sum1--&gt;conv3--&gt;conv4--&gt;sum2--&gt;conv5--&gt;conv6</span>
<span class="c1">#     |            ^ |                    ^</span>
<span class="c1">#     |____________| |____________________|</span>
<span class="c1">#</span>
<span class="c1"># X: prune output channels</span>
<span class="c1"># O: prune input channels</span>
<span class="k">with</span> <span class="n">fluid</span><span class="o">.</span><span class="n">program_guard</span><span class="p">(</span><span class="n">main_program</span><span class="p">,</span> <span class="n">startup_program</span><span class="p">):</span>
    <span class="nb">input</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;image&quot;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">16</span><span class="p">])</span>
    <span class="n">conv1</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv1&quot;</span><span class="p">)</span>
    <span class="n">conv2</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="n">conv1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv2&quot;</span><span class="p">)</span>
    <span class="n">sum1</span> <span class="o">=</span> <span class="n">conv1</span> <span class="o">+</span> <span class="n">conv2</span>
    <span class="n">conv3</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="n">sum1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv3&quot;</span><span class="p">)</span>
    <span class="n">conv4</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="n">conv3</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv4&quot;</span><span class="p">)</span>
    <span class="n">sum2</span> <span class="o">=</span> <span class="n">conv4</span> <span class="o">+</span> <span class="n">sum1</span>
    <span class="n">conv5</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="n">sum2</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv5&quot;</span><span class="p">)</span>
    <span class="n">conv6</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="n">conv5</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv6&quot;</span><span class="p">)</span>
319

320
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;FLOPs: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">model_size</span><span class="p">(</span><span class="n">main_program</span><span class="p">)))</span>
321 322 323
</pre></div>

<h2 id="tablelatencyevaluator">TableLatencyEvaluator<a class="headerlink" href="#tablelatencyevaluator" title="Permanent link">#</a></h2>
324
<dl>
325
<dt>paddleslim.analysis.TableLatencyEvaluator(table_file, delimiter=",") <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/latency.py">源代码</a></dt>
326
<dd>
327
<p>基于硬件延时表的模型延时评估器。</p>
328 329
</dd>
</dl>
330 331 332
<p><strong>参数:</strong></p>
<ul>
<li>
333
<p><strong>table_file(str)</strong> - 所使用的延时评估表的绝对路径。关于演示评估表格式请参考:<a href="../paddleslim/analysis/table_latency.md">PaddleSlim硬件延时评估表格式</a></p>
334 335
</li>
<li>
336
<p><strong>delimiter(str)</strong> - 硬件延时评估表中,操作信息之前所使用的分割符,默认为英文字符逗号。</p>
337 338 339 340
</li>
</ul>
<p><strong>返回值:</strong></p>
<ul>
341
<li><strong>Evaluator</strong> - 硬件延时评估器的实例。</li>
342
</ul>
343
<dl>
344
<dt>paddleslim.analysis.TableLatencyEvaluator.latency(graph) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/latency.py">源代码</a></dt>
345
<dd>
346
<p>获得指定网络的预估延时。</p>
347 348
</dd>
</dl>
349 350
<p><strong>参数:</strong></p>
<ul>
351
<li><strong>graph(Program)</strong> - 待预估的目标网络。</li>
352 353 354
</ul>
<p><strong>返回值:</strong></p>
<ul>
355
<li><strong>latency</strong> - 目标网络的预估延时。</li>
356 357 358 359 360 361 362 363
</ul>
              
            </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
364
        <a href="../single_distiller_api/" class="btn btn-neutral float-right" title="知识蒸馏">Next <span class="icon icon-circle-arrow-right"></span></a>
365 366
      
      
367
        <a href="../prune_api/" class="btn btn-neutral" title="剪枝与敏感度"><span class="icon icon-circle-arrow-left"></span> Previous</a>
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" style="cursor: pointer">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
        <span><a href="../prune_api/" style="color: #fcfcfc;">&laquo; Previous</a></span>
      
      
        <span style="margin-left: 15px"><a href="../single_distiller_api/" style="color: #fcfcfc">Next &raquo;</a></span>
      
    </span>
</div>
    <script>var base_url = '../..';</script>
    <script src="../../js/theme.js" defer></script>
      <script src="../../mathjax-config.js" defer></script>
405
      <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML" defer></script>
406 407 408 409
      <script src="../../search/main.js" defer></script>

</body>
</html>