index.html 27.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="shortcut icon" href="../../img/favicon.ico">
11
  <title>模型分析 - PaddleSlim Docs</title>
12 13 14 15 16 17 18 19
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
  
  <script>
    // Current page data
20
    var mkdocs_page_name = "\u6a21\u578b\u5206\u6790";
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    var mkdocs_page_input_path = "api/analysis_api.md";
    var mkdocs_page_url = null;
  </script>
  
  <script src="../../js/jquery-2.1.1.min.js" defer></script>
  <script src="../../js/modernizr-2.8.3.min.js" defer></script>
  <script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
      <div class="wy-side-nav-search">
        <a href="../.." class="icon icon-home"> PaddleSlim Docs</a>
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
	<ul class="current">
	  
          
            <li class="toctree-l1">
		
    <a class="" href="../..">Home</a>
	    </li>
          
            <li class="toctree-l1">
		
    <span class="caption-text">API</span>
    <ul class="subnav">
                <li class="">
                    
    <a class="" href="../quantization_api/">量化</a>
                </li>
                <li class="">
                    
66
    <a class="" href="../prune_api/">剪枝与敏感度</a>
67 68 69
                </li>
                <li class=" current">
                    
70
    <a class="current" href="./">模型分析</a>
71 72
    <ul class="subnav">
            
73
    <li class="toctree-l3"><a href="#flops">FLOPs</a></li>
74
    
75 76 77 78 79

    <li class="toctree-l3"><a href="#model_size">model_size</a></li>
    

    <li class="toctree-l3"><a href="#tablelatencyevaluator">TableLatencyEvaluator</a></li>
80 81 82 83 84 85
    

    </ul>
                </li>
                <li class="">
                    
86
    <a class="" href="../single_distiller_api/">知识蒸馏</a>
87 88 89 90 91 92 93 94 95
                </li>
                <li class="">
                    
    <a class="" href="../nas_api/">SA搜索</a>
                </li>
                <li class="">
                    
    <a class="" href="../search_space/">搜索空间</a>
                </li>
96 97 98 99
                <li class="">
                    
    <a class="" href="../../table_latency/">硬件延时评估表</a>
                </li>
100 101 102
    </ul>
	    </li>
          
103 104
            <li class="toctree-l1">
		
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    <span class="caption-text">教程</span>
    <ul class="subnav">
                <li class="">
                    
    <a class="" href="../../tutorials/quant_post_demo/">离线量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../../tutorials/quant_aware_demo/">量化训练</a>
                </li>
                <li class="">
                    
    <a class="" href="../../tutorials/quant_embedding_demo/">Embedding量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../../tutorials/nas_demo/">SA搜索</a>
                </li>
                <li class="">
                    
    <a class="" href="../../tutorials/distillation_demo/">知识蒸馏</a>
                </li>
    </ul>
	    </li>
          
            <li class="toctree-l1">
		
132 133 134
    <a class="" href="../../algo/algo/">算法原理</a>
	    </li>
          
135 136 137 138 139
            <li class="toctree-l1">
		
    <a class="" href="../../model_zoo/">模型库</a>
	    </li>
          
140 141 142 143 144
            <li class="toctree-l1">
		
    <a class="" href="../../model_zoo2/">模型库2</a>
	    </li>
          
145 146 147 148 149
            <li class="toctree-l1">
		
    <a class="" href="../../model_zoo3/">模型库3</a>
	    </li>
          
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        </ul>
      </div>
      &nbsp;
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../..">PaddleSlim Docs</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="../..">Docs</a> &raquo;</li>
    
      
        
          <li>API &raquo;</li>
        
      
    
176
    <li>模型分析</li>
177 178 179 180 181 182 183 184 185 186 187 188
    <li class="wy-breadcrumbs-aside">
      
        <a href="https://github.com/PaddlePaddle/PaddleSlim/edit/master/docs/api/analysis_api.md"
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
189 190 191 192 193 194 195
                <h2 id="flops">FLOPs<a class="headerlink" href="#flops" title="Permanent link">#</a></h2>
<dl>
<dt>paddleslim.analysis.flops(program, detail=False) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/flops.py">源代码</a></dt>
<dd>
<p>获得指定网络的浮点运算次数(FLOPs)。</p>
</dd>
</dl>
196 197 198
<p><strong>参数:</strong></p>
<ul>
<li>
199 200 201 202
<p><strong>program(paddle.fluid.Program)</strong> - 待分析的目标网络。更多关于Program的介绍请参考:<a href="https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/Program_cn.html#program">Program概念介绍</a></p>
</li>
<li>
<p><strong>detail(bool)</strong> - 是否返回每个卷积层的FLOPs。默认为False。</p>
203 204
</li>
<li>
205
<p><strong>only_conv(bool)</strong> - 如果设置为True,则仅计算卷积层和全连接层的FLOPs,即浮点数的乘加(multiplication-adds)操作次数。如果设置为False,则也会计算卷积和全连接层之外的操作的FLOPs。</p>
206 207 208 209 210
</li>
</ul>
<p><strong>返回值:</strong></p>
<ul>
<li>
211
<p><strong>flops(float)</strong> - 整个网络的FLOPs。</p>
212 213
</li>
<li>
214
<p><strong>params2flops(dict)</strong> - 每层卷积对应的FLOPs,其中key为卷积层参数名称,value为FLOPs值。</p>
215 216 217
</li>
</ul>
<p><strong>示例:</strong></p>
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
<table class="codehilitetable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53</pre></div></td><td class="code"><div class="codehilite"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="kn">as</span> <span class="nn">fluid</span>
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
<span class="kn">from</span> <span class="nn">paddle.fluid.param_attr</span> <span class="kn">import</span> <span class="n">ParamAttr</span>
<span class="kn">from</span> <span class="nn">paddleslim.analysis</span> <span class="kn">import</span> <span class="n">flops</span>

<span class="k">def</span> <span class="nf">conv_bn_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span>
                  <span class="n">num_filters</span><span class="p">,</span>
                  <span class="n">filter_size</span><span class="p">,</span>
                  <span class="n">name</span><span class="p">,</span>
                  <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
    <span class="n">conv</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span>
        <span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
        <span class="n">num_filters</span><span class="o">=</span><span class="n">num_filters</span><span class="p">,</span>
        <span class="n">filter_size</span><span class="o">=</span><span class="n">filter_size</span><span class="p">,</span>
        <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
        <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="n">filter_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
        <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
        <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_weights&quot;</span><span class="p">),</span>
        <span class="n">bias_attr</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
        <span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_out&quot;</span><span class="p">)</span>
    <span class="n">bn_name</span> <span class="o">=</span> <span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_bn&quot;</span>
    <span class="k">return</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">batch_norm</span><span class="p">(</span>
        <span class="nb">input</span><span class="o">=</span><span class="n">conv</span><span class="p">,</span>
        <span class="n">act</span><span class="o">=</span><span class="n">act</span><span class="p">,</span>
        <span class="n">name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_output&#39;</span><span class="p">,</span>
        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_scale&#39;</span><span class="p">),</span>
        <span class="n">bias_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_offset&#39;</span><span class="p">),</span>
        <span class="n">moving_mean_name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_mean&#39;</span><span class="p">,</span>
        <span class="n">moving_variance_name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_variance&#39;</span><span class="p">,</span> <span class="p">)</span>

<span class="n">main_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="n">startup_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="c1">#   X       X              O       X              O</span>
<span class="c1"># conv1--&gt;conv2--&gt;sum1--&gt;conv3--&gt;conv4--&gt;sum2--&gt;conv5--&gt;conv6</span>
<span class="c1">#     |            ^ |                    ^</span>
<span class="c1">#     |____________| |____________________|</span>
<span class="c1">#</span>
<span class="c1"># X: prune output channels</span>
<span class="c1"># O: prune input channels</span>
<span class="k">with</span> <span class="n">fluid</span><span class="o">.</span><span class="n">program_guard</span><span class="p">(</span><span class="n">main_program</span><span class="p">,</span> <span class="n">startup_program</span><span class="p">):</span>
    <span class="nb">input</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;image&quot;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="bp">None</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">16</span><span class="p">])</span>
    <span class="n">conv1</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv1&quot;</span><span class="p">)</span>
    <span class="n">conv2</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv2&quot;</span><span class="p">)</span>
    <span class="n">sum1</span> <span class="o">=</span> <span class="n">conv1</span> <span class="o">+</span> <span class="n">conv2</span>
    <span class="n">conv3</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">sum1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv3&quot;</span><span class="p">)</span>
    <span class="n">conv4</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv3</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv4&quot;</span><span class="p">)</span>
    <span class="n">sum2</span> <span class="o">=</span> <span class="n">conv4</span> <span class="o">+</span> <span class="n">sum1</span>
    <span class="n">conv5</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">sum2</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv5&quot;</span><span class="p">)</span>
    <span class="n">conv6</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv5</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv6&quot;</span><span class="p">)</span>

322
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;FLOPs: {}&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">flops</span><span class="p">(</span><span class="n">main_program</span><span class="p">)))</span>
323
</pre></div>
324
</td></tr></table>
325 326

<h2 id="model_size">model_size<a class="headerlink" href="#model_size" title="Permanent link">#</a></h2>
327
<p>paddleslim.analysis.model_size(program) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/model_size.py">源代码</a></p>
328 329 330
<p>获得指定网络的参数数量。</p>
<p><strong>参数:</strong></p>
<ul>
331
<li><strong>program(paddle.fluid.Program)</strong> - 待分析的目标网络。更多关于Program的介绍请参考:<a href="https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/Program_cn.html#program">Program概念介绍</a></li>
332 333 334
</ul>
<p><strong>返回值:</strong></p>
<ul>
335
<li><strong>model_size(int)</strong> - 整个网络的参数数量。</li>
336 337
</ul>
<p><strong>示例:</strong></p>
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
<table class="codehilitetable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45</pre></div></td><td class="code"><div class="codehilite"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="kn">as</span> <span class="nn">fluid</span>
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
<span class="kn">from</span> <span class="nn">paddle.fluid.param_attr</span> <span class="kn">import</span> <span class="n">ParamAttr</span>
<span class="kn">from</span> <span class="nn">paddleslim.analysis</span> <span class="kn">import</span> <span class="n">model_size</span>

<span class="k">def</span> <span class="nf">conv_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span>
                  <span class="n">num_filters</span><span class="p">,</span>
                  <span class="n">filter_size</span><span class="p">,</span>
                  <span class="n">name</span><span class="p">,</span>
                  <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
    <span class="n">conv</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span>
        <span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
        <span class="n">num_filters</span><span class="o">=</span><span class="n">num_filters</span><span class="p">,</span>
        <span class="n">filter_size</span><span class="o">=</span><span class="n">filter_size</span><span class="p">,</span>
        <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
        <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="n">filter_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
        <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
        <span class="n">act</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_weights&quot;</span><span class="p">),</span>
        <span class="n">bias_attr</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
        <span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_out&quot;</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">conv</span>

<span class="n">main_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="n">startup_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="c1">#   X       X              O       X              O</span>
<span class="c1"># conv1--&gt;conv2--&gt;sum1--&gt;conv3--&gt;conv4--&gt;sum2--&gt;conv5--&gt;conv6</span>
<span class="c1">#     |            ^ |                    ^</span>
<span class="c1">#     |____________| |____________________|</span>
<span class="c1">#</span>
<span class="c1"># X: prune output channels</span>
<span class="c1"># O: prune input channels</span>
<span class="k">with</span> <span class="n">fluid</span><span class="o">.</span><span class="n">program_guard</span><span class="p">(</span><span class="n">main_program</span><span class="p">,</span> <span class="n">startup_program</span><span class="p">):</span>
    <span class="nb">input</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;image&quot;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="bp">None</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">16</span><span class="p">])</span>
    <span class="n">conv1</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv1&quot;</span><span class="p">)</span>
    <span class="n">conv2</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="n">conv1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv2&quot;</span><span class="p">)</span>
    <span class="n">sum1</span> <span class="o">=</span> <span class="n">conv1</span> <span class="o">+</span> <span class="n">conv2</span>
    <span class="n">conv3</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="n">sum1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv3&quot;</span><span class="p">)</span>
    <span class="n">conv4</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="n">conv3</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv4&quot;</span><span class="p">)</span>
    <span class="n">sum2</span> <span class="o">=</span> <span class="n">conv4</span> <span class="o">+</span> <span class="n">sum1</span>
    <span class="n">conv5</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="n">sum2</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv5&quot;</span><span class="p">)</span>
    <span class="n">conv6</span> <span class="o">=</span> <span class="n">conv_layer</span><span class="p">(</span><span class="n">conv5</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv6&quot;</span><span class="p">)</span>

426
<span class="k">print</span><span class="p">(</span><span class="s2">&quot;FLOPs: {}&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">model_size</span><span class="p">(</span><span class="n">main_program</span><span class="p">)))</span>
427
</pre></div>
428
</td></tr></table>
429 430

<h2 id="tablelatencyevaluator">TableLatencyEvaluator<a class="headerlink" href="#tablelatencyevaluator" title="Permanent link">#</a></h2>
431 432 433
<dl>
<dt>paddleslim.analysis.TableLatencyEvaluator(table_file, delimiter=",") <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/latency.py">源代码</a></dt>
<dd>
434
<p>基于硬件延时表的模型延时评估器。</p>
435 436
</dd>
</dl>
437 438 439
<p><strong>参数:</strong></p>
<ul>
<li>
440
<p><strong>table_file(str)</strong> - 所使用的延时评估表的绝对路径。关于演示评估表格式请参考:<a href="../paddleslim/analysis/table_latency.md">PaddleSlim硬件延时评估表格式</a></p>
441 442
</li>
<li>
443
<p><strong>delimiter(str)</strong> - 硬件延时评估表中,操作信息之前所使用的分割符,默认为英文字符逗号。</p>
444 445 446 447
</li>
</ul>
<p><strong>返回值:</strong></p>
<ul>
448
<li><strong>Evaluator</strong> - 硬件延时评估器的实例。</li>
449
</ul>
450 451 452
<dl>
<dt>paddleslim.analysis.TableLatencyEvaluator.latency(graph) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/latency.py">源代码</a></dt>
<dd>
453
<p>获得指定网络的预估延时。</p>
454 455
</dd>
</dl>
456 457
<p><strong>参数:</strong></p>
<ul>
458
<li><strong>graph(Program)</strong> - 待预估的目标网络。</li>
459 460 461
</ul>
<p><strong>返回值:</strong></p>
<ul>
462
<li><strong>latency</strong> - 目标网络的预估延时。</li>
463 464 465 466 467 468 469 470
</ul>
              
            </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
471
        <a href="../single_distiller_api/" class="btn btn-neutral float-right" title="知识蒸馏">Next <span class="icon icon-circle-arrow-right"></span></a>
472 473
      
      
474
        <a href="../prune_api/" class="btn btn-neutral" title="剪枝与敏感度"><span class="icon icon-circle-arrow-left"></span> Previous</a>
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" style="cursor: pointer">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
        <span><a href="../prune_api/" style="color: #fcfcfc;">&laquo; Previous</a></span>
      
      
        <span style="margin-left: 15px"><a href="../single_distiller_api/" style="color: #fcfcfc">Next &raquo;</a></span>
      
    </span>
</div>
    <script>var base_url = '../..';</script>
    <script src="../../js/theme.js" defer></script>
      <script src="../../mathjax-config.js" defer></script>
512
      <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML" defer></script>
513 514 515 516
      <script src="../../search/main.js" defer></script>

</body>
</html>