strategy_config.py 4.6 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import namedtuple

__all__ = [
    "Quantization", "Distillation", "MultiTeacherDistillation", \
    "HyperParameterOptimization", "Prune", "UnstructurePrune",  \
    "merge_config", "ProgramInfo", "TrainConfig",
]

### Quantization:
Quantization = namedtuple(
    "Quantization",
    [
        "quantize_op_types",
        "weight_bits",
        "activation_bits",
30 31 32 33 34
        "not_quant_pattern",  # Only support in QAT
        "use_pact",  # Only support in QAT
        "is_full_quantize",
        "activation_quantize_type",
        "weight_quantize_type"
C
ceci3 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    ])

Quantization.__new__.__defaults__ = (None, ) * (len(Quantization._fields) - 1
                                                ) + (False, )

### Distillation:
Distillation = namedtuple(
    "Distillation",
    [
        "distill_loss",  ### list[list],支持不同节点之间使用不同的loss。
        "distill_node_pair",  ### list[list],支持不同节点之间使用不同的loss。
        "distill_lambda",  ### list[list],支持不同节点之间使用不同的loss。
        "teacher_model_dir",
        "teacher_model_filename",
        "teacher_params_filename",
        "merge_feed",
    ])

Distillation.__new__.__defaults__ = (None, ) * (len(Distillation._fields) - 1
                                                ) + (True, )

### 多teacher蒸馏配置
### Multi-Teacher Distillation:
MultiTeacherDistillation = namedtuple(
    "MultiTeacherDistillation",
    [
        "distill_loss",  ### list[str],每个teacher对应一个loss
        "distill_node_pair",  ### list[list],每个teacher对应一个蒸馏。仅支持logits蒸馏,不支持中间层蒸馏
        "distill_lambda",  ### list[float],每个teacher对应一个lambda。
        "teacher_model_dir",
        "teacher_model_filename",  ### list[str], 每个teacher对应一个模型文件
        "teacher_params_filename",  ### list[str], 每个teacher对应一个参数文件
        "merge_feed",
    ])

MultiTeacherDistillation.__new__.__defaults__ = (None, ) * (
    len(MultiTeacherDistillation._fields) - 1) + (True, )

### 不设置就按照默认的搜索空间进行超参搜索,设置的话按照设置的搜索空间搜索,这样可以支持单PTQ策略
###HyperParameterOptimization
HyperParameterOptimization = namedtuple("HyperParameterOptimization", [
    "ptq_algo", "bias_correct", "weight_quantize_type", "hist_percent",
    "batch_num", "max_quant_count"
])

HyperParameterOptimization.__new__.__defaults__ = (None, ) * (
    len(HyperParameterOptimization._fields) - 1) + (20, )

### Prune
Prune = namedtuple("Prune", [
    "prune_algo",
    "pruned_ratio",
    "prune_params_name",
    "criterion",
])
Prune.__new__.__defaults__ = (None, ) * len(Prune._fields)

### UnstructurePrune
UnstructurePrune = namedtuple("UnstructurePrune", [
    "prune_strategy",
    "prune_mode",
    "threshold",
C
ceci3 已提交
97
    "pruned_ratio",
C
ceci3 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    "gmp_config",
    "prune_params_type",
    "local_sparsity",
])
UnstructurePrune.__new__.__defaults__ = (None, ) * len(UnstructurePrune._fields)

### Train
TrainConfig = namedtuple("Train", [
    "epochs",
    "learning_rate",
    "optimizer",
    "optim_args",
    "eval_iter",
    "logging_iter",
    "origin_metric",
    "target_metric",
    "use_fleet",
    "amp_config",
    "recompute_config",
    "sharding_config",
])

TrainConfig.__new__.__defaults__ = (None, ) * len(TrainConfig._fields)


def merge_config(*args):
C
ceci3 已提交
124
    fields = set()
C
ceci3 已提交
125 126
    cfg = dict()
    for arg in args:
C
ceci3 已提交
127
        fields = fields.union(arg._fields)
C
ceci3 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        cfg.update(dict(arg._asdict()))
    MergeConfig = namedtuple("MergeConfig", fields)
    return MergeConfig(**cfg)


class ProgramInfo:
    def __init__(self,
                 startup_program,
                 program,
                 feed_target_names,
                 fetch_targets,
                 optimizer=None):
        self.startup_program = startup_program
        self.program = program
        self.feed_target_names = feed_target_names
        self.fetch_targets = fetch_targets
        self.optimizer = optimizer