strategy_config.py 4.5 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import namedtuple

__all__ = [
    "Quantization", "Distillation", "MultiTeacherDistillation", \
    "HyperParameterOptimization", "Prune", "UnstructurePrune",  \
    "merge_config", "ProgramInfo", "TrainConfig",
]

### Quantization:
Quantization = namedtuple(
    "Quantization",
    [
        "quantize_op_types",
        "weight_bits",
        "activation_bits",
        "not_quant_pattern",  ### ptq没有暴露相应接口
        "use_pact",  ### 仅QAT支持
        "is_full_quantize"
    ])

Quantization.__new__.__defaults__ = (None, ) * (len(Quantization._fields) - 1
                                                ) + (False, )

### Distillation:
Distillation = namedtuple(
    "Distillation",
    [
        "distill_loss",  ### list[list],支持不同节点之间使用不同的loss。
        "distill_node_pair",  ### list[list],支持不同节点之间使用不同的loss。
        "distill_lambda",  ### list[list],支持不同节点之间使用不同的loss。
        "teacher_model_dir",
        "teacher_model_filename",
        "teacher_params_filename",
        "merge_feed",
    ])

Distillation.__new__.__defaults__ = (None, ) * (len(Distillation._fields) - 1
                                                ) + (True, )

### 多teacher蒸馏配置
### Multi-Teacher Distillation:
MultiTeacherDistillation = namedtuple(
    "MultiTeacherDistillation",
    [
        "distill_loss",  ### list[str],每个teacher对应一个loss
        "distill_node_pair",  ### list[list],每个teacher对应一个蒸馏。仅支持logits蒸馏,不支持中间层蒸馏
        "distill_lambda",  ### list[float],每个teacher对应一个lambda。
        "teacher_model_dir",
        "teacher_model_filename",  ### list[str], 每个teacher对应一个模型文件
        "teacher_params_filename",  ### list[str], 每个teacher对应一个参数文件
        "merge_feed",
    ])

MultiTeacherDistillation.__new__.__defaults__ = (None, ) * (
    len(MultiTeacherDistillation._fields) - 1) + (True, )

### 不设置就按照默认的搜索空间进行超参搜索,设置的话按照设置的搜索空间搜索,这样可以支持单PTQ策略
###HyperParameterOptimization
HyperParameterOptimization = namedtuple("HyperParameterOptimization", [
    "ptq_algo", "bias_correct", "weight_quantize_type", "hist_percent",
    "batch_num", "max_quant_count"
])

HyperParameterOptimization.__new__.__defaults__ = (None, ) * (
    len(HyperParameterOptimization._fields) - 1) + (20, )

### Prune
Prune = namedtuple("Prune", [
    "prune_algo",
    "pruned_ratio",
    "prune_params_name",
    "criterion",
])
Prune.__new__.__defaults__ = (None, ) * len(Prune._fields)

### UnstructurePrune
UnstructurePrune = namedtuple("UnstructurePrune", [
    "prune_strategy",
    "prune_mode",
    "threshold",
    "prune_ratio",
    "gmp_config",
    "prune_params_type",
    "local_sparsity",
])
UnstructurePrune.__new__.__defaults__ = (None, ) * len(UnstructurePrune._fields)

### Train
TrainConfig = namedtuple("Train", [
    "epochs",
    "learning_rate",
    "optimizer",
    "optim_args",
    "eval_iter",
    "logging_iter",
    "origin_metric",
    "target_metric",
    "use_fleet",
    "amp_config",
    "recompute_config",
    "sharding_config",
])

TrainConfig.__new__.__defaults__ = (None, ) * len(TrainConfig._fields)


def merge_config(*args):
    fields = tuple()
    cfg = dict()
    for arg in args:
        fields += arg._fields
        cfg.update(dict(arg._asdict()))
    MergeConfig = namedtuple("MergeConfig", fields)
    return MergeConfig(**cfg)


class ProgramInfo:
    def __init__(self,
                 startup_program,
                 program,
                 feed_target_names,
                 fetch_targets,
                 optimizer=None):
        self.startup_program = startup_program
        self.program = program
        self.feed_target_names = feed_target_names
        self.fetch_targets = fetch_targets
        self.optimizer = optimizer