quant_embedding.py 12.6 KB
Newer Older
S
slf12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import copy
import numpy as np
21
import math
S
slf12 已提交
22

S
slf12 已提交
23
import paddle.fluid as fluid
S
slf12 已提交
24 25 26
from paddle.fluid.framework import IrGraph
from paddle.fluid import core

27 28
from ..common import get_logger
_logger = get_logger(__name__, level=logging.INFO)
S
slf12 已提交
29 30 31

__all__ = ['quant_embedding']

32
_default_single_config = {
S
slf12 已提交
33 34 35 36
    "quantize_type": "abs_max",
    "quantize_bits": 8,
    "dtype": "int8"
}
37 38 39 40
SUPPORT_OP_TYPES = ['lookup_table', 'fused_embedding_seq_pool', 'pyramid_hash']
SUPPORT_QUANTIZE_TYPES = ['abs_max']
SUPPORT_QUANTIZE_BITS = [8]
SUPPORT_DTYPE = ['int8']
S
slf12 已提交
41

42
_default_config = {"quantize_op_types": SUPPORT_OP_TYPES, }
S
slf12 已提交
43 44 45 46 47 48 49 50 51 52 53


def _merge_config(old_config, new_config):
    """
    merge default config and user defined config

    Args:
        old_config(dict): the copy of default_config
        new_config(dict): the user defined config, 'params_name' must be set.
            When 'threshold' is not set, quant embedding without clip .
    """
S
slf12 已提交
54 55
    old_config.update(new_config)
    keys = old_config.keys()
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    assert isinstance(old_config['quantize_op_types'], (str, list)), \
            'quantize_op_types can only be str or list[str]'
    if isinstance(old_config['quantize_op_types'], str):
        old_config['quantize_op_types'] = [old_config['quantize_op_types']]
    for op_type in old_config['quantize_op_types']:
        assert op_type in SUPPORT_OP_TYPES, \
                '{} is not supported, supported op types are {}'.format(
                        op_type, SUPPORT_OP_TYPES)
        if op_type not in keys:
            old_config[op_type] = _default_single_config
            continue
        else:
            assert isinstance(old_config[op_type], dict), \
                    "op type {}'s config must be dict"
            config_tmp = copy.deepcopy(_default_single_config)
            config_tmp.update(old_config[op_type])
            old_config[op_type] = config_tmp

        quantize_type = old_config[op_type]['quantize_type']
        assert isinstance(quantize_type, str), "quantize_type must be \
S
slf12 已提交
76 77
            str"

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        assert quantize_type in SUPPORT_QUANTIZE_TYPES , "" \
            "quantize_type {} is not supported, now supported quantize type" \
            " are {}.".format(quantize_type, SUPPORT_QUANTIZE_TYPES)

        quantize_bits = old_config[op_type]['quantize_bits']
        assert isinstance(quantize_bits, int), "quantize_bits must be int"
        assert quantize_bits in SUPPORT_QUANTIZE_BITS , " quantize_bits {}" \
                " is not supported, now supported quantize bits are" \
                " {}. ".format(quantize_bits, SUPPORT_QUANTIZE_BITS)

        dtype = old_config[op_type]['dtype']
        assert isinstance(dtype, str), "dtype must be str"
        assert dtype in SUPPORT_DTYPE , " dtype {} is not "\
            "supported, now supported dtypes are {} ".format(dtype, SUPPORT_DTYPE)
        if 'threshold' in old_config[op_type].keys():
            assert isinstance(old_config[op_type]['threshold'], (float, int)), \
                    "threshold must be number."

    _logger.info("quant_embedding config {}".format(old_config))
S
slf12 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    return old_config


def _get_var_tensor(scope, var_name):
    """
    get tensor array by name.
    Args:
        scope(fluid.Scope): scope to get var
        var_name(str): vatiable name
    Return:
        np.array
    """
    return np.array(scope.find_var(var_name).get_tensor())


def _get_scale_var_name(var_name):
    """
    get scale var name 
    """
    return var_name + '.scale'


def _get_quant_var_name(var_name):
    """
    get quantized var name
    """
    return var_name + '.int8'


def _get_dequant_var_name(var_name):
    """
    get dequantized var name
    """
    return var_name + '.dequantize'


def _restore_var(name, arr, scope, place):
    """
    restore quantized array to quantized var
    """
    tensor = scope.find_var(name).get_tensor()
    tensor.set(arr, place)


def _clear_var(var_name, scope):
    """
    free memory of var
    """
    tensor = scope.find_var(var_name).get_tensor()
    tensor._clear()


149 150
def _quant_embedding_abs_max(graph, scope, place, config, var_name,
                             embedding_node):
S
slf12 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    """
    quantize embedding using abs_max

    Args:
        graph(IrGraph): graph that includes lookup_table op
        scope(fluid.Scope): scope
        place(fluid.CPUPlace or flud.CUDAPlace): place
        config(dict): config to quant
    """

    def _quant_abs_max(tensor_array, config):
        """
        quant array using abs_max op
        """
        bit_length = config['quantize_bits']
        scale = np.max(np.abs(tensor_array)).astype("float32")
        quanted_tensor = np.round(tensor_array / scale * (
            (1 << (bit_length - 1)) - 1))
S
slf12 已提交
169
        return scale, quanted_tensor.astype(config['dtype'])
S
slf12 已提交
170

S
slf12 已提交
171
    def _insert_dequant_abs_max_op(graph, scope, var_node, scale_node, config):
S
slf12 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        """
        Insert dequantize_abs_max op in graph
        """
        assert var_node.is_var(), "{} is not a var".format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=_get_dequant_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=core.VarDesc.VarType.FP32)
        scope.var(dequant_var_node.name())

        max_range = (1 << (config['quantize_bits'] - 1)) - 1
        output_ops = var_node.outputs
        dequant_op = graph.create_op_node(
            op_type='dequantize_abs_max',
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scale': scale_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op)
        graph.link_to(scale_node, dequant_op)
        graph.link_to(dequant_op, dequant_var_node)
        for node in output_ops:
            graph.update_input_link(var_node, dequant_var_node, node)

201 202 203 204 205 206 207 208 209
    def _clip_array(array, config):
        if 'threshold' in config.keys():
            threshold = config['threshold']
        else:
            abs_array = np.max(np.abs(array))
            if abs_array < 1.0:
                return array
            threshold = np.percentile(np.abs(array), 99.99)
        return np.clip(array, -threshold, threshold)
S
slf12 已提交
210

211 212
    embedding_tensor = _get_var_tensor(scope, var_name)
    embedding_array = _clip_array(embedding_tensor, config)
S
slf12 已提交
213
    # get scale and quanted tensor
214
    scale, quanted_tensor = _quant_abs_max(embedding_array, config)
S
slf12 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    #create params must to use create_persistable_node
    scale_var = graph.create_persistable_node(
        _get_scale_var_name(var_name),
        var_type=embedding_node.type(),
        shape=[1],
        var_dtype=core.VarDesc.VarType.FP32)
    quant_tensor_var = graph.create_persistable_node(
        _get_quant_var_name(var_name),
        var_type=embedding_node.type(),
        shape=embedding_node.shape(),
        var_dtype=core.VarDesc.VarType.INT8)
    # create var in scope
    scope.var(_get_quant_var_name(var_name))
    scope.var(_get_scale_var_name(var_name))
    #set var by tensor array or scale
    _restore_var(_get_quant_var_name(var_name), quanted_tensor, scope, place)
S
slf12 已提交
232
    _restore_var(_get_scale_var_name(var_name), np.array(scale), scope, place)
S
slf12 已提交
233 234 235

    # insert dequantize_abs_max op
    for op_node in embedding_node.outputs:
236 237 238 239
        graph.update_input_link(embedding_node, quant_tensor_var, op_node)
        out_name = op_node.output('Out')[0]
        var_node = graph._find_node_by_name(op_node.outputs, out_name)
        _insert_dequant_abs_max_op(graph, scope, var_node, scale_var, config)
S
slf12 已提交
240 241 242 243 244 245

    # free float embedding params memory
    _clear_var(embedding_node.name(), scope)
    graph.safe_remove_nodes(embedding_node)


246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
def _remove_link(in_node, out_node):
    in_node.remove_output(out_node)
    out_node.remove_input(in_node)


def _split_embedding_seq_pool(graph, op):
    inputs = op.inputs
    outputs = op.outputs
    op_desc = op.node.op()
    combiner = op_desc.attr("combiner")
    padding_idx = op_desc.attr("padding_idx")
    is_sparse = op_desc.attr("is_sparse")
    ids = graph._find_node_by_name(inputs, op.input('Ids')[0])
    weight = graph._find_node_by_name(inputs, op.input('W')[0])
    out = outputs[0]
    lookup_out = graph.create_var_node(
        name=ids.name() + '.look_up_table.out',
        var_type=core.VarDesc.VarType.LOD_TENSOR,
        shape=[1],
        var_dtype=weight.dtype())
    lookup_table_op = graph.create_op_node(
        op_type='lookup_table',
        attrs={'is_sparse': is_sparse,
               'padding_idx': padding_idx},
        inputs={'W': weight,
                'Ids': ids},
        outputs={'Out': lookup_out})
    _remove_link(ids, op)
    _remove_link(weight, op)
    _remove_link(op, out)
    graph.link_to(ids, lookup_table_op)
    graph.link_to(weight, lookup_table_op)
    graph.link_to(lookup_table_op, lookup_out)
    max_index = graph.create_var_node(
        name=ids.name() + '.seq_pool_op.max_index',
        var_type=core.VarDesc.VarType.LOD_TENSOR,
        shape=[1],
        var_dtype=weight.dtype())

    seq_pool_op = graph.create_op_node(
        op_type='sequence_pool',
        inputs={'X': lookup_out},
        outputs={'Out': out,
                 'MaxIndex': max_index},
        attrs={'pooltype': combiner.upper(),
               'is_test': True})
    if combiner == 'max':
        max_index.stop_gradient = True
    graph.link_to(lookup_out, seq_pool_op)
    graph.link_to(seq_pool_op, out)
    graph.link_to(seq_pool_op, max_index)


def quant_embedding(program, place, config=None, scope=None):
300 301
    """quantize lookup_table op parameters

S
slf12 已提交
302 303
    Args:
        program(fluid.Program): infer program
304 305 306
        scope(fluid.Scope): Scope records the mapping between variable names and variables, similar to brackets in programming languages. Usually users can use `fluid.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_ . When ``None`` will use `fluid.global_scope() <https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/executor_cn/global_scope_cn.html>`_. Default : ``None``.
        place(fluid.CPUPlace or fluid.CUDAPlace): This parameter represents the executor run on which device.
        config(dict): config to quantize. The keys are 'params_name', 'quantize_type', \
S
slf12 已提交
307
                'quantize_bits', 'dtype', 'threshold'. \
308 309 310 311
                ``quantize_type`` is  quantize type, supported types are ['abs_max'], default is "abs_max".
                ``quantize_bits`` supported bits are [8] and default is 8.
                ``dtype`` is quantize dtype, supported dtype are ['int8'], default is 'int8'.
                ``threshold`` is threshold to clip tensor before quant. When threshold is not set, \
S
slf12 已提交
312
                        tensor will not be clipped.
313 314 315

    Returns:
        None
S
slf12 已提交
316
    """
317 318
    config = config or {}
    config = _merge_config(copy.deepcopy(_default_config), config)
S
slf12 已提交
319
    scope = fluid.global_scope() if scope is None else scope
S
slf12 已提交
320

S
slf12 已提交
321
    graph = IrGraph(core.Graph(program.desc), for_test=True)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    quantize_params_map = {}
    all_op = graph.all_op_nodes()
    for op in all_op:
        if op.inputs == [] and op.outputs == []:
            continue
        op_type = op.name()
        if op_type in config['quantize_op_types']:
            weight_name = op.input('W')[0]
            if weight_name in quantize_params_map.values():
                continue
            embedding_node = graph._find_node_by_name(op.inputs,
                                                      op.input('W')[0])
            for op_node in embedding_node.outputs:
                if op_node.name() == 'fused_embedding_seq_pool':
                    _split_embedding_seq_pool(graph, op_node)
            _quant_embedding_abs_max(graph, scope, place, \
                    config[op_type], weight_name, embedding_node)
            quantize_params_map[weight_name] = _get_quant_var_name(weight_name)
    for op in all_op:
        if op.name() == 'fused_embedding_seq_pool':
            graph.safe_remove_nodes(op)
S
slf12 已提交
343 344

    return graph.to_program()