quant_embedding.py 8.3 KB
Newer Older
S
slf12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import copy
import numpy as np

import paddle
import paddle.fluid as fluid
from paddle.fluid.framework import IrGraph
from paddle.fluid import core

#_logger = logging.basicConfig(level=logging.DEBUG)

__all__ = ['quant_embedding']

default_config = {
    "quantize_type": "abs_max",
    "quantize_bits": 8,
    "dtype": "int8"
}

support_quantize_types = ['abs_max']
support_quantize_bits = [8]
support_dtype = ['int8']


def _merge_config(old_config, new_config):
    """
    merge default config and user defined config

    Args:
        old_config(dict): the copy of default_config
        new_config(dict): the user defined config, 'params_name' must be set.
            When 'threshold' is not set, quant embedding without clip .
    """
    keys = new_config.keys()
    assert 'params_name' in keys, "params_name must be set"
    old_config['params_name'] = new_config['params_name']

    if 'quantize_type' in keys:
        quantize_type = new_config['quantize_type']
        assert isinstance(quantize_type, str), "quantize_type must be \
                str"

        assert quantize_type in support_quantize_types, " \
                quantize_type {} is not supported, now supported quantize type \
                are {}.".format(quantize_type, support_quantize_types)
        old_config['quantize_type'] = quantize_type

    if 'quantize_bits' in keys:
        quantize_bits = new_config['quantize_bits']
        assert isinstance(quantize_bits, int), "quantize_bits must be int"
        assert quantize_bits in support_quantize_bits, " quantize_bits {} \
                is not supported, now supported quantize bits are \
                {}. ".format(quantize_bits, support_quantize_bits)
        old_config['quantize_bits'] = quantize_bits

    if 'dtype' in keys:
        dtype = new_config['dtype']
        assert isinstance(dtype, str), "dtype must be str"
        assert dtype in support_dtype, " dtype {} is not \
                supported, now supported dtypes are {} \
                 ".format(dtype, support_dtype)
        old_config['dtype'] = dtype

    if 'threshold' in keys:
        old_config['threshold'] = new_config['threshold']

    print("quant_embedding config {}".format(old_config))
    return old_config


def _get_var_tensor(scope, var_name):
    """
    get tensor array by name.
    Args:
        scope(fluid.Scope): scope to get var
        var_name(str): vatiable name
    Return:
        np.array
    """
    return np.array(scope.find_var(var_name).get_tensor())


def _clip_tensor(tensor_array, config):
    """
    when 'threshold' is set, clip tensor by 'threshold' and '-threshold'
    Args:
        tensor_array(np.array): array to clip
        config(dict): config dict
    """
    if 'threshold' in config.keys():
        threshold = config['threshold']
        assert isinstance(threshold, (int, float)), "threshold must be number"
        tensor_array[tensor_array > threshold] = threshold
        tensor_array[tensor_array < threshold] = -threshold
    return tensor_array


def _get_scale_var_name(var_name):
    """
    get scale var name 
    """
    return var_name + '.scale'


def _get_quant_var_name(var_name):
    """
    get quantized var name
    """
    return var_name + '.int8'


def _get_dequant_var_name(var_name):
    """
    get dequantized var name
    """
    return var_name + '.dequantize'


def _restore_var(name, arr, scope, place):
    """
    restore quantized array to quantized var
    """
    tensor = scope.find_var(name).get_tensor()
    tensor.set(arr, place)


def _clear_var(var_name, scope):
    """
    free memory of var
    """
    tensor = scope.find_var(var_name).get_tensor()
    tensor._clear()


def _quant_embedding_abs_max(graph, scope, place, config):
    """
    quantize embedding using abs_max

    Args:
        graph(IrGraph): graph that includes lookup_table op
        scope(fluid.Scope): scope
        place(fluid.CPUPlace or flud.CUDAPlace): place
        config(dict): config to quant
    """

    def _quant_abs_max(tensor_array, config):
        """
        quant array using abs_max op
        """
        bit_length = config['quantize_bits']
        scale = np.max(np.abs(tensor_array)).astype("float32")
        quanted_tensor = np.round(tensor_array / scale * (
            (1 << (bit_length - 1)) - 1))
        return scale, quanted_tensor.astype(np.int8)

    def _insert_dequant_abx_max_op(graph, scope, var_node, scale_node, config):
        """
        Insert dequantize_abs_max op in graph
        """
        assert var_node.is_var(), "{} is not a var".format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=_get_dequant_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=core.VarDesc.VarType.FP32)
        scope.var(dequant_var_node.name())

        max_range = (1 << (config['quantize_bits'] - 1)) - 1
        output_ops = var_node.outputs
        dequant_op = graph.create_op_node(
            op_type='dequantize_abs_max',
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scale': scale_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op)
        graph.link_to(scale_node, dequant_op)
        graph.link_to(dequant_op, dequant_var_node)
        for node in output_ops:
            graph.update_input_link(var_node, dequant_var_node, node)

    all_var_nodes = graph.all_var_nodes()
    var_name = config['params_name']
    # find embedding var node by 'params_name'
    embedding_node = graph._find_node_by_name(all_var_nodes, var_name)
    embedding_tensor = _get_var_tensor(scope, var_name)
    embedding_tensor = _clip_tensor(embedding_tensor, config)

    # get scale and quanted tensor
    scale, quanted_tensor = _quant_abs_max(embedding_tensor, config)

    #create params must to use create_persistable_node
    scale_var = graph.create_persistable_node(
        _get_scale_var_name(var_name),
        var_type=embedding_node.type(),
        shape=[1],
        var_dtype=core.VarDesc.VarType.FP32)
    quant_tensor_var = graph.create_persistable_node(
        _get_quant_var_name(var_name),
        var_type=embedding_node.type(),
        shape=embedding_node.shape(),
        var_dtype=core.VarDesc.VarType.INT8)
    # create var in scope
    scope.var(_get_quant_var_name(var_name))
    scope.var(_get_scale_var_name(var_name))
    #set var by tensor array or scale
    _restore_var(_get_quant_var_name(var_name), quanted_tensor, scope, place)
    _restore_var(_get_scale_var_name(var_name), scale, scope, place)

    # insert dequantize_abs_max op
    for op_node in embedding_node.outputs:
        if op_node.name() == 'lookup_table':
            graph.update_input_link(embedding_node, quant_tensor_var, op_node)
            var_node = op_node.outputs[0]
            _insert_dequant_abx_max_op(graph, scope, var_node, scale_var,
                                       config)

    # free float embedding params memory
    _clear_var(embedding_node.name(), scope)
    graph.safe_remove_nodes(embedding_node)


def quant_embedding(program, scope, place, config=None):
    if config is not None:
        assert isinstance(config, dict), "config must be dict"
        config = _merge_config(copy.deepcopy(default_config), config)
    else:
        config = default_config
    graph = IrGraph(core.Graph(program.desc), for_test=True)
    if config['quantize_type'] == 'abs_max':
        _quant_embedding_abs_max(graph, scope, place, config)

    return graph.to_program()