ptq.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import argparse
import six
from inspect import isfunction
import os
import time
import random
from types import FunctionType
from typing import Dict
import numpy as np
from PIL import Image

import paddle
from paddle.io import Dataset
from paddle.vision.transforms import transforms
import paddle.vision.models as models
from paddle.quantization import QuantConfig
from paddle.quantization import PTQ
from tqdm import tqdm
from paddleslim.quant.observers import HistObserver, KLObserver, EMDObserver, MSEObserver, AVGObserver
from paddleslim.quant.observers import MSEChannelWiseWeightObserver, AbsMaxChannelWiseWeightObserver

import sys
sys.path.append(os.path.dirname("__file__"))
sys.path.append(
    os.path.join(os.path.dirname("__file__"), os.path.pardir, os.path.pardir))

SUPPORT_MODELS: Dict[str, FunctionType] = {}
for _name, _module in models.__dict__.items():
    if isfunction(_module) and 'pretrained' in _module.__code__.co_varnames:
        SUPPORT_MODELS[_name] = _module

ACTIVATION_OBSERVERS: Dict[str, type] = {
    'hist': HistObserver,
    'kl': KLObserver,
    'emd': EMDObserver,
    'mse': MSEObserver,
    'avg': AVGObserver,
}

WEIGHT_OBSERVERS: Dict[str, type] = {
    'mse_channel_wise': MSEChannelWiseWeightObserver,
    'abs_max_channel_wise': AbsMaxChannelWiseWeightObserver,
}


class ImageNetValDataset(Dataset):
    def __init__(self, data_dir, image_size=224, resize_short_size=256):
        super(ImageNetValDataset, self).__init__()
        val_file_list = os.path.join(data_dir, 'val_list.txt')
        test_file_list = os.path.join(data_dir, 'test_list.txt')
        self.data_dir = data_dir

        normalize = transforms.Normalize(
            mean=[123.675, 116.28, 103.53], std=[58.395, 57.120, 57.375])
        self.transform = transforms.Compose([
            transforms.Resize(resize_short_size),
            transforms.CenterCrop(image_size),
            transforms.Transpose(), normalize
        ])

        with open(val_file_list) as flist:
            lines = [line.strip() for line in flist]
            self.data = [line.split() for line in lines]

    def __getitem__(self, index):
        img_path, label = self.data[index]
        img_path = os.path.join(self.data_dir, img_path)
        img = Image.open(img_path).convert('RGB')
        label = np.array([label]).astype(np.int64)
        return self.transform(img), label

    def __len__(self):
        return len(self.data)


def test(net, dataset):
    valid_loader = paddle.io.DataLoader(dataset, batch_size=1)
    net.eval()
    batch_id = 0
    acc_top1_ns = []
    acc_top5_ns = []

    eval_reader_cost = 0.0
    eval_run_cost = 0.0
    total_samples = 0
    reader_start = time.time()
    for data in tqdm(valid_loader()):
        eval_reader_cost += time.time() - reader_start
        image = data[0]
        label = data[1]
        eval_start = time.time()

        out = net(image)
        acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
        acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)

        eval_run_cost += time.time() - eval_start
        batch_size = image.shape[0]
        total_samples += batch_size

        acc_top1_ns.append(np.mean(acc_top1.numpy()))
        acc_top5_ns.append(np.mean(acc_top5.numpy()))
        batch_id += 1
        reader_start = time.time()
    return np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))


def calibrate(model, dataset, batch_num, batch_size, num_workers=1):
    data_loader = paddle.io.DataLoader(
        dataset, batch_size=batch_size, num_workers=num_workers)

    pbar = tqdm(total=batch_num)
    for idx, data in enumerate(data_loader()):
        model(data[0])
        pbar.update(1)
        if (batch_num > 0) and (idx + 1 >= batch_num):
            break
    pbar.close()


def main():
    num_workers = 5
    if FLAGS.ce_test:
        # set seed
        seed = 111
        paddle.seed(seed)
        np.random.seed(seed)
        random.seed(seed)
        num_workers = 0

    # 1 load model
    fp32_model = SUPPORT_MODELS[FLAGS.model](pretrained=True)
    if FLAGS.pretrain_weight:
        info_dict = paddle.load(FLAGS.pretrain_weight)
        fp32_model.load_dict(info_dict)
        print('Finish loading model weights:{}'.format(FLAGS.pretrain_weight))
    fp32_model.eval()
    val_dataset = ImageNetValDataset(FLAGS.data)

    # 2 quantizations
    activation_observer = ACTIVATION_OBSERVERS[FLAGS.activation_observer]()
    weight_observer = WEIGHT_OBSERVERS[FLAGS.weight_observer]()

    config = QuantConfig(weight=None, activation=None)
    config.add_type_config(
        paddle.nn.Conv2D,
        activation=activation_observer,
        weight=weight_observer)
    ptq = PTQ(config)
    top1, top5 = test(fp32_model, val_dataset)
    print(
        f"\033[31mBaseline(FP32): top1/top5 = {top1*100:.2f}%/{top5*100:.2f}%\033[0m"
    )
    quant_model = ptq.quantize(fp32_model)

    print("Start PTQ calibration for quantization")
    calibrate(
        quant_model,
        val_dataset,
        FLAGS.quant_batch_num,
        FLAGS.quant_batch_size,
        num_workers=num_workers)

    infer_model = ptq.convert(quant_model, inplace=True)

    top1, top5 = test(infer_model, val_dataset)
    print(
        f"\033[31mPTQ with {FLAGS.activation_observer}/{FLAGS.weight_observer}: top1/top5 = {top1*100:.2f}%/{top5*100:.2f}%\033[0m"
    )

    dummy_input = paddle.static.InputSpec(
        shape=[None, 3, 224, 224], dtype='float32')
    paddle.jit.save(infer_model, "./int8_infer", [dummy_input])


if __name__ == '__main__':
    parser = argparse.ArgumentParser("Quantization on ImageNet")

    # model
    parser.add_argument(
        "--model",
        type=str,
        choices=SUPPORT_MODELS.keys(),
        default='mobilenet_v1',
        help="model name", )
    parser.add_argument(
        "--pretrain_weight",
        type=str,
        default=None,
        help="pretrain weight path")
    parser.add_argument(
        "--output_dir", type=str, default='output', help="save dir")

    # data
    parser.add_argument(
        '--data',
        default="/dataset/ILSVRC2012",
        help=
        'path to dataset (should have subdirectories named "train" and "val"',
        required=True, )

    parser.add_argument(
        '--val_dir',
        default="val",
        help='the dir that saves val images for paddle.Model')

    # quantization
    parser.add_argument(
        "--activation_observer",
        default='mse',
        type=str,
        choices=ACTIVATION_OBSERVERS.keys(),
        help="batch num for quant")
    parser.add_argument(
        "--weight_observer",
        default='mse_channel_wise',
        choices=WEIGHT_OBSERVERS.keys(),
        type=str,
        help="batch size for quant")

    # train
    parser.add_argument(
        "--quant_batch_num", default=10, type=int, help="batch num for quant")
    parser.add_argument(
        "--quant_batch_size", default=10, type=int, help="batch size for quant")
    parser.add_argument(
        '--ce_test', default=False, type=bool, help="Whether to CE test.")

    FLAGS = parser.parse_args()
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(FLAGS))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")
    main()