Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
90797a22
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 1 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
90797a22
编写于
3月 29, 2023
作者:
W
whs
提交者:
GitHub
3月 29, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add tutorial of PTQ for classification (#1705)
上级
5000cf3d
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
448 addition
and
0 deletion
+448
-0
example/quantization/ptq/classification/README.md
example/quantization/ptq/classification/README.md
+59
-0
example/quantization/ptq/classification/eval.py
example/quantization/ptq/classification/eval.py
+138
-0
example/quantization/ptq/classification/ptq.py
example/quantization/ptq/classification/ptq.py
+251
-0
未找到文件。
example/quantization/ptq/classification/README.md
0 → 100644
浏览文件 @
90797a22
# 动态图离线量化
本示例介绍如何对动态图模型进行离线量化,示例以常用的MobileNetV1和MobileNetV3模型为例,介绍如何对其进行离线量化。
## 分类模型的离线量化流程
#### 准备数据
在当前目录下创建
``data``
文件夹,将
``ImageNet``
的验证集解压在
``data``
文件夹下,解压后
``data/ILSVRC2012``
文件夹下应包含以下文件:
-
``'val'``
文件夹,验证图片
-
``'val_list.txt'``
文件
#### 准备需要离线量化的模型
本示例直接使用
[
paddle vision
](
https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/vision/models
)
内置的模型结构和预训练权重。通过以下命令查看支持的所有模型:
```
python ptq.py --help
```
## 启动命令
以MobileNetV1为例,通过以下脚本启动PTQ任务:
```
bash
python ptq.py
\
--data
=
dataset/ILSVRC2012/
\
--model
=
mobilenet_v1
\
--activation_observer
=
'mse'
\
--weight_observer
=
'mse_channel_wise'
\
--quant_batch_num
=
10
\
--quant_batch_size
=
10
\
--output_dir
=
"output_ptq"
```
其中,通过
`activation_observer`
配置用于激活的量化算法,通过
`weight_observer`
配置用于权重的量化算法。
更多支持的量化算法,请执行以下命令查看:
```
python ptq.py --help
```
## 评估精度
执行以下命令,使用 PaddleInference 推理库测试推理精度:
```
bash
python eval.py
--model_path
=
output_ptq/mobilenet_v1/int8_infer/
--data_dir
=
dataset/ILSVRC2012/
--use_gpu
=
True
```
-
评估时支持CPU,并且不依赖TensorRT,MKLDNN。
## 量化结果
| 模型 | FP32模型准确率(Top1/Top5) | 量化方法(activation/weight) | 量化模型准确率(Top1/Top5) |
| ----------- | --------------------------- | ------------ | --------------------------- |
| MobileNetV1 | 70.10%/90.10% | mse / mes_channel_wise | 69.10%/89.80% |
| MobileNetV2 | 71.10%/90.90% | mse / mes_channel_wise | 70.70%/90.10% |
example/quantization/ptq/classification/eval.py
0 → 100644
浏览文件 @
90797a22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
numpy
as
np
import
time
import
sys
import
argparse
import
math
import
paddle
import
paddle.inference
as
paddle_infer
from
ptq
import
ImageNetValDataset
def
eval
():
# create predictor
model_file
=
os
.
path
.
join
(
FLAGS
.
model_path
,
FLAGS
.
model_filename
)
params_file
=
os
.
path
.
join
(
FLAGS
.
model_path
,
FLAGS
.
params_filename
)
config
=
paddle_infer
.
Config
(
model_file
,
params_file
)
if
FLAGS
.
use_gpu
:
config
.
enable_use_gpu
(
1000
,
0
)
if
not
FLAGS
.
ir_optim
:
config
.
switch_ir_optim
(
False
)
predictor
=
paddle_infer
.
create_predictor
(
config
)
input_names
=
predictor
.
get_input_names
()
input_handle
=
predictor
.
get_input_handle
(
input_names
[
0
])
output_names
=
predictor
.
get_output_names
()
output_handle
=
predictor
.
get_output_handle
(
output_names
[
0
])
# prepare data
val_dataset
=
ImageNetValDataset
(
FLAGS
.
data_dir
)
eval_loader
=
paddle
.
io
.
DataLoader
(
val_dataset
,
batch_size
=
FLAGS
.
batch_size
,
num_workers
=
5
)
cost_time
=
0.
total_num
=
0.
correct_1_num
=
0
correct_5_num
=
0
for
batch_id
,
data
in
enumerate
(
eval_loader
()):
# set input
img_np
=
np
.
array
([
tensor
.
numpy
()
for
tensor
in
data
[
0
]])
label_np
=
np
.
array
([
tensor
.
numpy
()
for
tensor
in
data
[
1
]])
input_handle
.
reshape
(
img_np
.
shape
)
input_handle
.
copy_from_cpu
(
img_np
)
# run
t1
=
time
.
time
()
predictor
.
run
()
t2
=
time
.
time
()
cost_time
+=
(
t2
-
t1
)
output_data
=
output_handle
.
copy_to_cpu
()
# calculate accuracy
for
i
in
range
(
len
(
label_np
)):
label
=
label_np
[
i
][
0
]
result
=
output_data
[
i
,
:]
index
=
result
.
argsort
()
total_num
+=
1
if
index
[
-
1
]
==
label
:
correct_1_num
+=
1
if
label
in
index
[
-
5
:]:
correct_5_num
+=
1
if
batch_id
%
10
==
0
:
acc1
=
correct_1_num
/
total_num
acc5
=
correct_5_num
/
total_num
avg_time
=
cost_time
/
total_num
print
(
"batch_id {}, acc1 {:.3f}, acc5 {:.3f}, avg time {:.5f} sec/img"
.
format
(
batch_id
,
acc1
,
acc5
,
avg_time
))
if
FLAGS
.
test_samples
>
0
and
\
(
batch_id
+
1
)
*
FLAGS
.
batch_size
>=
FLAGS
.
test_samples
:
break
acc1
=
correct_1_num
/
total_num
acc5
=
correct_5_num
/
total_num
avg_time
=
cost_time
/
total_num
print
(
"End test: test image {}"
.
format
(
total_num
))
print
(
"test_acc1: {:.4f}; test_acc5: {:.4f}; avg time: {:.5f} sec/img"
.
format
(
acc1
,
acc5
,
avg_time
))
print
(
"
\n
"
)
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
'--model_path'
,
type
=
str
,
default
=
""
,
help
=
"The inference model path."
)
parser
.
add_argument
(
'--model_filename'
,
type
=
str
,
default
=
"model.pdmodel"
,
help
=
"model filename"
)
parser
.
add_argument
(
'--params_filename'
,
type
=
str
,
default
=
"model.pdiparams"
,
help
=
"params filename"
)
parser
.
add_argument
(
'--data_dir'
,
type
=
str
,
default
=
"dataset/ILSVRC2012/"
,
help
=
"The ImageNet dataset root dir."
)
parser
.
add_argument
(
'--test_samples'
,
type
=
int
,
default
=-
1
,
help
=
"Test samples. If set -1, use all test samples"
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
10
,
help
=
"Batch size."
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
bool
,
default
=
False
,
help
=
" Whether use gpu or not."
)
parser
.
add_argument
(
'--ir_optim'
,
type
=
bool
,
default
=
False
,
help
=
"Enable ir optim."
)
FLAGS
=
parser
.
parse_args
()
eval
()
example/quantization/ptq/classification/ptq.py
0 → 100644
浏览文件 @
90797a22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
argparse
import
six
from
inspect
import
isfunction
import
os
import
time
import
random
from
types
import
FunctionType
from
typing
import
Dict
import
numpy
as
np
from
PIL
import
Image
import
paddle
from
paddle.io
import
Dataset
from
paddle.vision.transforms
import
transforms
import
paddle.vision.models
as
models
from
paddle.quantization
import
QuantConfig
from
paddle.quantization
import
PTQ
from
tqdm
import
tqdm
from
paddleslim.quant.observers
import
HistObserver
,
KLObserver
,
EMDObserver
,
MSEObserver
,
AVGObserver
from
paddleslim.quant.observers
import
MSEChannelWiseWeightObserver
,
AbsMaxChannelWiseWeightObserver
import
sys
sys
.
path
.
append
(
os
.
path
.
dirname
(
"__file__"
))
sys
.
path
.
append
(
os
.
path
.
join
(
os
.
path
.
dirname
(
"__file__"
),
os
.
path
.
pardir
,
os
.
path
.
pardir
))
SUPPORT_MODELS
:
Dict
[
str
,
FunctionType
]
=
{}
for
_name
,
_module
in
models
.
__dict__
.
items
():
if
isfunction
(
_module
)
and
'pretrained'
in
_module
.
__code__
.
co_varnames
:
SUPPORT_MODELS
[
_name
]
=
_module
ACTIVATION_OBSERVERS
:
Dict
[
str
,
type
]
=
{
'hist'
:
HistObserver
,
'kl'
:
KLObserver
,
'emd'
:
EMDObserver
,
'mse'
:
MSEObserver
,
'avg'
:
AVGObserver
,
}
WEIGHT_OBSERVERS
:
Dict
[
str
,
type
]
=
{
'mse_channel_wise'
:
MSEChannelWiseWeightObserver
,
'abs_max_channel_wise'
:
AbsMaxChannelWiseWeightObserver
,
}
class
ImageNetValDataset
(
Dataset
):
def
__init__
(
self
,
data_dir
,
image_size
=
224
,
resize_short_size
=
256
):
super
(
ImageNetValDataset
,
self
).
__init__
()
val_file_list
=
os
.
path
.
join
(
data_dir
,
'val_list.txt'
)
test_file_list
=
os
.
path
.
join
(
data_dir
,
'test_list.txt'
)
self
.
data_dir
=
data_dir
normalize
=
transforms
.
Normalize
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.120
,
57.375
])
self
.
transform
=
transforms
.
Compose
([
transforms
.
Resize
(
resize_short_size
),
transforms
.
CenterCrop
(
image_size
),
transforms
.
Transpose
(),
normalize
])
with
open
(
val_file_list
)
as
flist
:
lines
=
[
line
.
strip
()
for
line
in
flist
]
self
.
data
=
[
line
.
split
()
for
line
in
lines
]
def
__getitem__
(
self
,
index
):
img_path
,
label
=
self
.
data
[
index
]
img_path
=
os
.
path
.
join
(
self
.
data_dir
,
img_path
)
img
=
Image
.
open
(
img_path
).
convert
(
'RGB'
)
label
=
np
.
array
([
label
]).
astype
(
np
.
int64
)
return
self
.
transform
(
img
),
label
def
__len__
(
self
):
return
len
(
self
.
data
)
def
test
(
net
,
dataset
):
valid_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
1
)
net
.
eval
()
batch_id
=
0
acc_top1_ns
=
[]
acc_top5_ns
=
[]
eval_reader_cost
=
0.0
eval_run_cost
=
0.0
total_samples
=
0
reader_start
=
time
.
time
()
for
data
in
tqdm
(
valid_loader
()):
eval_reader_cost
+=
time
.
time
()
-
reader_start
image
=
data
[
0
]
label
=
data
[
1
]
eval_start
=
time
.
time
()
out
=
net
(
image
)
acc_top1
=
paddle
.
metric
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
paddle
.
metric
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
eval_run_cost
+=
time
.
time
()
-
eval_start
batch_size
=
image
.
shape
[
0
]
total_samples
+=
batch_size
acc_top1_ns
.
append
(
np
.
mean
(
acc_top1
.
numpy
()))
acc_top5_ns
.
append
(
np
.
mean
(
acc_top5
.
numpy
()))
batch_id
+=
1
reader_start
=
time
.
time
()
return
np
.
mean
(
np
.
array
(
acc_top1_ns
)),
np
.
mean
(
np
.
array
(
acc_top5_ns
))
def
calibrate
(
model
,
dataset
,
batch_num
,
batch_size
,
num_workers
=
1
):
data_loader
=
paddle
.
io
.
DataLoader
(
dataset
,
batch_size
=
batch_size
,
num_workers
=
num_workers
)
pbar
=
tqdm
(
total
=
batch_num
)
for
idx
,
data
in
enumerate
(
data_loader
()):
model
(
data
[
0
])
pbar
.
update
(
1
)
if
(
batch_num
>
0
)
and
(
idx
+
1
>=
batch_num
):
break
pbar
.
close
()
def
main
():
num_workers
=
5
if
FLAGS
.
ce_test
:
# set seed
seed
=
111
paddle
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
random
.
seed
(
seed
)
num_workers
=
0
# 1 load model
fp32_model
=
SUPPORT_MODELS
[
FLAGS
.
model
](
pretrained
=
True
)
if
FLAGS
.
pretrain_weight
:
info_dict
=
paddle
.
load
(
FLAGS
.
pretrain_weight
)
fp32_model
.
load_dict
(
info_dict
)
print
(
'Finish loading model weights:{}'
.
format
(
FLAGS
.
pretrain_weight
))
fp32_model
.
eval
()
val_dataset
=
ImageNetValDataset
(
FLAGS
.
data
)
# 2 quantizations
activation_observer
=
ACTIVATION_OBSERVERS
[
FLAGS
.
activation_observer
]()
weight_observer
=
WEIGHT_OBSERVERS
[
FLAGS
.
weight_observer
]()
config
=
QuantConfig
(
weight
=
None
,
activation
=
None
)
config
.
add_type_config
(
paddle
.
nn
.
Conv2D
,
activation
=
activation_observer
,
weight
=
weight_observer
)
ptq
=
PTQ
(
config
)
top1
,
top5
=
test
(
fp32_model
,
val_dataset
)
print
(
f
"
\033
[31mBaseline(FP32): top1/top5 =
{
top1
*
100
:.
2
f
}
%/
{
top5
*
100
:.
2
f
}
%
\033
[0m"
)
quant_model
=
ptq
.
quantize
(
fp32_model
)
print
(
"Start PTQ calibration for quantization"
)
calibrate
(
quant_model
,
val_dataset
,
FLAGS
.
quant_batch_num
,
FLAGS
.
quant_batch_size
,
num_workers
=
num_workers
)
infer_model
=
ptq
.
convert
(
quant_model
,
inplace
=
True
)
top1
,
top5
=
test
(
infer_model
,
val_dataset
)
print
(
f
"
\033
[31mPTQ with
{
FLAGS
.
activation_observer
}
/
{
FLAGS
.
weight_observer
}
: top1/top5 =
{
top1
*
100
:.
2
f
}
%/
{
top5
*
100
:.
2
f
}
%
\033
[0m"
)
dummy_input
=
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
3
,
224
,
224
],
dtype
=
'float32'
)
paddle
.
jit
.
save
(
infer_model
,
"./int8_infer"
,
[
dummy_input
])
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
"Quantization on ImageNet"
)
# model
parser
.
add_argument
(
"--model"
,
type
=
str
,
choices
=
SUPPORT_MODELS
.
keys
(),
default
=
'mobilenet_v1'
,
help
=
"model name"
,
)
parser
.
add_argument
(
"--pretrain_weight"
,
type
=
str
,
default
=
None
,
help
=
"pretrain weight path"
)
parser
.
add_argument
(
"--output_dir"
,
type
=
str
,
default
=
'output'
,
help
=
"save dir"
)
# data
parser
.
add_argument
(
'--data'
,
default
=
"/dataset/ILSVRC2012"
,
help
=
'path to dataset (should have subdirectories named "train" and "val"'
,
required
=
True
,
)
parser
.
add_argument
(
'--val_dir'
,
default
=
"val"
,
help
=
'the dir that saves val images for paddle.Model'
)
# quantization
parser
.
add_argument
(
"--activation_observer"
,
default
=
'mse'
,
type
=
str
,
choices
=
ACTIVATION_OBSERVERS
.
keys
(),
help
=
"batch num for quant"
)
parser
.
add_argument
(
"--weight_observer"
,
default
=
'mse_channel_wise'
,
choices
=
WEIGHT_OBSERVERS
.
keys
(),
type
=
str
,
help
=
"batch size for quant"
)
# train
parser
.
add_argument
(
"--quant_batch_num"
,
default
=
10
,
type
=
int
,
help
=
"batch num for quant"
)
parser
.
add_argument
(
"--quant_batch_size"
,
default
=
10
,
type
=
int
,
help
=
"batch size for quant"
)
parser
.
add_argument
(
'--ce_test'
,
default
=
False
,
type
=
bool
,
help
=
"Whether to CE test."
)
FLAGS
=
parser
.
parse_args
()
print
(
"----------- Configuration Arguments -----------"
)
for
arg
,
value
in
sorted
(
six
.
iteritems
(
vars
(
FLAGS
))):
print
(
"%s: %s"
%
(
arg
,
value
))
print
(
"------------------------------------------------"
)
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录