Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
e3637a3c
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
286
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e3637a3c
编写于
9月 08, 2020
作者:
C
chenguowei01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add config
上级
1a3f44a5
变更
25
隐藏空白更改
内联
并排
Showing
25 changed file
with
767 addition
and
302 deletion
+767
-302
dygraph/configs/_base_/cityscapes.yml
dygraph/configs/_base_/cityscapes.yml
+39
-0
dygraph/configs/_base_/optic_disc_seg.yml
dygraph/configs/_base_/optic_disc_seg.yml
+37
-0
dygraph/configs/fcn_hrnet/fcn_hrnetw18_cityscapes_1024x512_100k.yml
...nfigs/fcn_hrnet/fcn_hrnetw18_cityscapes_1024x512_100k.yml
+9
-0
dygraph/configs/fcn_hrnet/fcn_hrnetw18_optic_disc_512x512_10k.yml
...configs/fcn_hrnet/fcn_hrnetw18_optic_disc_512x512_10k.yml
+9
-0
dygraph/configs/ocrnet/ocrnet_hrnetw18_cityscapes_1024x512_40k.yml
...onfigs/ocrnet/ocrnet_hrnetw18_cityscapes_1024x512_40k.yml
+6
-5
dygraph/core/train.py
dygraph/core/train.py
+31
-3
dygraph/core/val.py
dygraph/core/val.py
+5
-1
dygraph/cvlibs/__init__.py
dygraph/cvlibs/__init__.py
+3
-0
dygraph/cvlibs/manager.py
dygraph/cvlibs/manager.py
+1
-0
dygraph/cvlibs/param_init.py
dygraph/cvlibs/param_init.py
+25
-0
dygraph/models/__init__.py
dygraph/models/__init__.py
+1
-0
dygraph/models/architectures/hrnet.py
dygraph/models/architectures/hrnet.py
+33
-12
dygraph/models/architectures/mobilenetv3.py
dygraph/models/architectures/mobilenetv3.py
+51
-21
dygraph/models/architectures/resnet_vd.py
dygraph/models/architectures/resnet_vd.py
+54
-24
dygraph/models/architectures/xception_deeplab.py
dygraph/models/architectures/xception_deeplab.py
+47
-11
dygraph/models/deeplab.py
dygraph/models/deeplab.py
+107
-85
dygraph/models/fcn.py
dygraph/models/fcn.py
+91
-82
dygraph/models/losses/__init__.py
dygraph/models/losses/__init__.py
+15
-0
dygraph/models/losses/cross_entroy_loss.py
dygraph/models/losses/cross_entroy_loss.py
+76
-0
dygraph/models/ocrnet.py
dygraph/models/ocrnet.py
+20
-1
dygraph/models/pspnet.py
dygraph/models/pspnet.py
+58
-40
dygraph/models/unet.py
dygraph/models/unet.py
+3
-3
dygraph/train.py
dygraph/train.py
+4
-1
dygraph/transforms/transforms.py
dygraph/transforms/transforms.py
+2
-2
dygraph/utils/config.py
dygraph/utils/config.py
+40
-11
未找到文件。
dygraph/configs/_base_/cityscapes.yml
0 → 100644
浏览文件 @
e3637a3c
batch_size
:
4
iters
:
100000
learning_rate
:
0.01
train_dataset
:
type
:
Cityscapes
dataset_root
:
data/cityscapes
transforms
:
-
type
:
ResizeStepScaling
min_scale_factor
:
0.5
max_scale_factor
:
2.0
scale_step_size
:
0.25
-
type
:
RandomPaddingCrop
crop_size
:
[
1024
,
512
]
-
type
:
RandomHorizontalFlip
-
type
:
Normalize
mode
:
train
val_dataset
:
type
:
Cityscapes
dataset_root
:
data/cityscapes
transforms
:
-
type
:
Normalize
mode
:
val
optimizer
:
type
:
sgd
learning_rate
:
value
:
0.01
decay
:
type
:
poly
power
:
0.9
loss
:
types
:
-
type
:
CrossEntropyLoss
coef
:
[
1
]
dygraph/configs/_base_/optic_disc_seg.yml
0 → 100644
浏览文件 @
e3637a3c
batch_size
:
4
iters
:
10000
learning_rate
:
0.01
train_dataset
:
type
:
OpticDiscSeg
dataset_root
:
data/optic_disc_seg
transforms
:
-
type
:
Resize
target_size
:
[
512
,
512
]
-
type
:
RandomHorizontalFlip
-
type
:
Normalize
mode
:
train
val_dataset
:
type
:
OpticDiscSeg
dataset_root
:
data/optic_disc_seg
transforms
:
-
type
:
Resize
target_size
:
[
512
,
512
]
-
type
:
Normalize
mode
:
val
optimizer
:
type
:
sgd
learning_rate
:
value
:
0.01
decay
:
type
:
poly
power
:
0.9
loss
:
types
:
-
type
:
CrossEntropyLoss
coef
:
[
1
]
dygraph/configs/fcn_hrnet/fcn_hrnetw18_cityscapes_1024x512_100k.yml
0 → 100644
浏览文件 @
e3637a3c
_base_
:
'
../_base_/cityscapes.yml'
model
:
type
:
FCN
backbone
:
type
:
HRNet_W18
backbone_pretrained
:
pretrained_model/hrnet_w18_imagenet
num_classes
:
19
backbone_channels
:
[
270
]
dygraph/configs/fcn_hrnet/fcn_hrnetw18_optic_disc_512x512_10k.yml
0 → 100644
浏览文件 @
e3637a3c
_base_
:
'
../_base_/optic_disc_seg.yml'
model
:
type
:
FCN
backbone
:
type
:
HRNet_W18
backbone_pretrained
:
pretrained_model/hrnet_w18_imagenet
num_classes
:
2
backbone_channels
:
[
270
]
dygraph/configs/ocrnet/ocrnet_hrnetw18_cityscapes_1024x512_40k.yml
浏览文件 @
e3637a3c
...
...
@@ -3,32 +3,33 @@ iters: 40000
train_dataset
:
type
:
Cityscapes
dataset_root
:
data
sets
/cityscapes
dataset_root
:
data/cityscapes
transforms
:
-
type
:
RandomHorizontalFlip
-
type
:
ResizeStepScaling
min_scale_factor
:
0.5
max_scale_factor
:
2.0
scale_step_size
:
0.25
-
type
:
RandomPaddingCrop
crop_size
:
[
1024
,
512
]
-
type
:
RandomHorizontalFlip
-
type
:
Normalize
mode
:
train
val_dataset
:
type
:
Cityscapes
dataset_root
:
data
sets
/cityscapes
dataset_root
:
data/cityscapes
transforms
:
-
type
:
Normalize
mode
:
val
model
:
type
:
ocrn
et
type
:
OCRN
et
backbone
:
type
:
HRNet_W18
pretrained
:
dygraph/pretrained_model/hrnet_w18_ssld/model
backbone_pretrianed
:
None
num_classes
:
19
in_channels
:
270
model_pretrained
:
None
optimizer
:
type
:
sgd
...
...
dygraph/core/train.py
浏览文件 @
e3637a3c
...
...
@@ -14,11 +14,13 @@
import
os
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
paddle.fluid.io
import
DataLoader
# from paddle.incubate.hapi.distributed import DistributedBatchSampler
from
paddle.io
import
DistributedBatchSampler
import
paddle.nn.functional
as
F
import
dygraph.utils.logger
as
logger
from
dygraph.utils
import
load_pretrained_model
...
...
@@ -27,6 +29,27 @@ from dygraph.utils import Timer, calculate_eta
from
.val
import
evaluate
def
check_logits_losses
(
logits
,
losses
):
len_logits
=
len
(
logits
)
len_losses
=
len
(
losses
[
'types'
])
if
len_logits
!=
len_losses
:
raise
RuntimeError
(
'The length of logits should equal to the types of loss config: {} != {}.'
.
format
(
len_logits
,
len_losses
))
def
loss_computation
(
logits
,
label
,
losses
):
check_logits_losses
(
logits
,
losses
)
loss
=
0
for
i
in
range
(
len
(
logits
)):
logit
=
logits
[
i
]
if
logit
.
shape
[
-
2
:]
!=
label
.
shape
[
-
2
:]:
logit
=
F
.
resize_bilinear
(
logit
,
label
.
shape
[
-
2
:])
loss_i
=
losses
[
'types'
][
i
](
logit
,
label
)
loss
+=
losses
[
'coef'
][
i
]
*
loss_i
return
loss
def
train
(
model
,
train_dataset
,
places
=
None
,
...
...
@@ -40,7 +63,8 @@ def train(model,
log_iters
=
10
,
num_classes
=
None
,
num_workers
=
8
,
use_vdl
=
False
):
use_vdl
=
False
,
losses
=
None
):
ignore_index
=
model
.
ignore_index
nranks
=
ParallelEnv
().
nranks
...
...
@@ -90,13 +114,17 @@ def train(model,
images
=
data
[
0
]
labels
=
data
[
1
].
astype
(
'int64'
)
if
nranks
>
1
:
loss
=
ddp_model
(
images
,
labels
)
logits
=
ddp_model
(
images
)
loss
=
loss_computation
(
logits
,
labels
,
losses
)
# loss = ddp_model(images, labels)
# apply_collective_grads sum grads over multiple gpus.
loss
=
ddp_model
.
scale_loss
(
loss
)
loss
.
backward
()
ddp_model
.
apply_collective_grads
()
else
:
loss
=
model
(
images
,
labels
)
logits
=
model
(
images
)
loss
=
loss_computation
(
logits
,
labels
,
losses
)
# loss = model(images, labels)
loss
.
backward
()
optimizer
.
minimize
(
loss
)
model
.
clear_gradients
()
...
...
dygraph/core/val.py
浏览文件 @
e3637a3c
...
...
@@ -19,6 +19,8 @@ import tqdm
import
cv2
from
paddle.fluid.dygraph.base
import
to_variable
import
paddle.fluid
as
fluid
import
paddle.nn.functional
as
F
import
paddle
import
dygraph.utils.logger
as
logger
from
dygraph.utils
import
ConfusionMatrix
...
...
@@ -47,7 +49,9 @@ def evaluate(model,
for
iter
,
(
im
,
im_info
,
label
)
in
tqdm
.
tqdm
(
enumerate
(
eval_dataset
),
total
=
total_iters
):
im
=
to_variable
(
im
)
pred
,
_
=
model
(
im
)
# pred, _ = model(im)
logits
=
model
(
im
)
pred
=
paddle
.
argmax
(
logits
[
0
],
axis
=
1
)
pred
=
pred
.
numpy
().
astype
(
'float32'
)
pred
=
np
.
squeeze
(
pred
)
for
info
in
im_info
[::
-
1
]:
...
...
dygraph/cvlibs/__init__.py
浏览文件 @
e3637a3c
...
...
@@ -11,3 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
manager
from
.
import
param_init
dygraph/cvlibs/manager.py
浏览文件 @
e3637a3c
...
...
@@ -115,3 +115,4 @@ MODELS = ComponentManager()
BACKBONES
=
ComponentManager
()
DATASETS
=
ComponentManager
()
TRANSFORMS
=
ComponentManager
()
LOSSES
=
ComponentManager
()
dygraph/cvlibs/param_init.py
0 → 100644
浏览文件 @
e3637a3c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
def
constant_init
(
param
,
value
=
0.0
):
initializer
=
fluid
.
initializer
.
Constant
(
value
)
initializer
(
param
,
param
.
block
)
def
normal_init
(
param
,
loc
=
0.0
,
scale
=
1.0
,
seed
=
0
):
initializer
=
fluid
.
initializer
.
Normal
(
loc
=
loc
,
scale
=
scale
,
seed
=
seed
)
initializer
(
param
,
param
.
block
)
dygraph/models/__init__.py
浏览文件 @
e3637a3c
...
...
@@ -13,6 +13,7 @@
# limitations under the License.
from
.architectures
import
*
from
.losses
import
*
from
.unet
import
UNet
from
.deeplab
import
*
from
.fcn
import
*
...
...
dygraph/models/architectures/hrnet.py
浏览文件 @
e3637a3c
...
...
@@ -13,6 +13,7 @@
# limitations under the License.
import
math
import
os
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -23,6 +24,8 @@ from paddle.fluid.initializer import Normal
from
paddle.nn
import
SyncBatchNorm
as
BatchNorm
from
dygraph.cvlibs
import
manager
from
dygraph.utils
import
utils
from
dygraph.cvlibs
import
param_init
__all__
=
[
"HRNet_W18_Small_V1"
,
"HRNet_W18_Small_V2"
,
"HRNet_W18"
,
"HRNet_W30"
,
...
...
@@ -36,6 +39,7 @@ class HRNet(fluid.dygraph.Layer):
https://arxiv.org/pdf/1908.07919.pdf.
Args:
backbone_pretrained (str): the path of pretrained model.
stage1_num_modules (int): number of modules for stage1. Default 1.
stage1_num_blocks (list): number of blocks per module for stage1. Default [4].
stage1_num_channels (list): number of channels per branch for stage1. Default [64].
...
...
@@ -52,6 +56,7 @@ class HRNet(fluid.dygraph.Layer):
"""
def
__init__
(
self
,
backbone_pretrained
=
None
,
stage1_num_modules
=
1
,
stage1_num_blocks
=
[
4
],
stage1_num_channels
=
[
64
],
...
...
@@ -141,6 +146,8 @@ class HRNet(fluid.dygraph.Layer):
has_se
=
self
.
has_se
,
name
=
"st4"
)
self
.
init_weight
(
backbone_pretrained
)
def
forward
(
self
,
x
,
label
=
None
,
mode
=
'train'
):
input_shape
=
x
.
shape
[
2
:]
conv1
=
self
.
conv_layer1_1
(
x
)
...
...
@@ -163,7 +170,31 @@ class HRNet(fluid.dygraph.Layer):
x3
=
fluid
.
layers
.
resize_bilinear
(
st4
[
3
],
out_shape
=
(
x0_h
,
x0_w
))
x
=
fluid
.
layers
.
concat
([
st4
[
0
],
x1
,
x2
,
x3
],
axis
=
1
)
return
x
return
[
x
]
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
params
=
self
.
parameters
()
for
param
in
params
:
param_name
=
param
.
name
if
'batch_norm'
in
param_name
:
if
'w_0'
in
param_name
:
param_init
.
constant_init
(
param
,
1.0
)
elif
'b_0'
in
param_name
:
param_init
.
constant_init
(
param
,
0.0
)
if
'conv'
in
param_name
and
'w_0'
in
param_name
:
param_init
.
normal_init
(
param
,
scale
=
0.001
)
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -184,18 +215,8 @@ class ConvBNLayer(fluid.dygraph.Layer):
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
param_attr
=
ParamAttr
(
initializer
=
Normal
(
scale
=
0.001
),
name
=
name
+
"_weights"
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
weight_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
)),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
)))
self
.
_batch_norm
=
BatchNorm
(
num_filters
)
self
.
act
=
act
def
forward
(
self
,
input
):
...
...
dygraph/models/architectures/mobilenetv3.py
浏览文件 @
e3637a3c
...
...
@@ -17,8 +17,9 @@ from __future__ import division
from
__future__
import
print_function
import
math
import
numpy
as
np
import
os
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
...
...
@@ -28,6 +29,7 @@ from paddle.nn import SyncBatchNorm as BatchNorm
from
dygraph.models.architectures
import
layer_utils
from
dygraph.cvlibs
import
manager
from
dygraph.utils
import
utils
__all__
=
[
"MobileNetV3_small_x0_35"
,
"MobileNetV3_small_x0_5"
,
...
...
@@ -46,6 +48,7 @@ def make_divisible(v, divisor=8, min_value=None):
new_v
+=
divisor
return
new_v
def
get_padding_same
(
kernel_size
,
dilation_rate
):
"""
SAME padding implementation given kernel_size and dilation_rate.
...
...
@@ -53,7 +56,7 @@ def get_padding_same(kernel_size, dilation_rate):
(F-(k+(k -1)*(r-1))+2*p)/s + 1 = F_new
where F: a feature map
k: kernel size, r: dilation rate, p: padding value, s: stride
F_new: new feature map
F_new: new feature map
Args:
kernel_size (int)
dilation_rate (int)
...
...
@@ -63,12 +66,19 @@ def get_padding_same(kernel_size, dilation_rate):
"""
k
=
kernel_size
r
=
dilation_rate
padding_same
=
(
k
+
(
k
-
1
)
*
(
r
-
1
)
-
1
)
//
2
padding_same
=
(
k
+
(
k
-
1
)
*
(
r
-
1
)
-
1
)
//
2
return
padding_same
class
MobileNetV3
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
scale
=
1.0
,
model_name
=
"small"
,
class_dim
=
1000
,
output_stride
=
None
,
**
kwargs
):
def
__init__
(
self
,
backbone_pretrained
=
None
,
scale
=
1.0
,
model_name
=
"small"
,
class_dim
=
1000
,
output_stride
=
None
,
**
kwargs
):
super
(
MobileNetV3
,
self
).
__init__
()
inplanes
=
16
...
...
@@ -77,19 +87,21 @@ class MobileNetV3(fluid.dygraph.Layer):
# k, exp, c, se, nl, s,
[
3
,
16
,
16
,
False
,
"relu"
,
1
],
[
3
,
64
,
24
,
False
,
"relu"
,
2
],
[
3
,
72
,
24
,
False
,
"relu"
,
1
],
# output 1 -> out_index=2
[
3
,
72
,
24
,
False
,
"relu"
,
1
],
# output 1 -> out_index=2
[
5
,
72
,
40
,
True
,
"relu"
,
2
],
[
5
,
120
,
40
,
True
,
"relu"
,
1
],
[
5
,
120
,
40
,
True
,
"relu"
,
1
],
# output 2 -> out_index=5
[
5
,
120
,
40
,
True
,
"relu"
,
1
],
# output 2 -> out_index=5
[
3
,
240
,
80
,
False
,
"hard_swish"
,
2
],
[
3
,
200
,
80
,
False
,
"hard_swish"
,
1
],
[
3
,
184
,
80
,
False
,
"hard_swish"
,
1
],
[
3
,
184
,
80
,
False
,
"hard_swish"
,
1
],
[
3
,
480
,
112
,
True
,
"hard_swish"
,
1
],
[
3
,
672
,
112
,
True
,
"hard_swish"
,
1
],
# output 3 -> out_index=11
[
3
,
672
,
112
,
True
,
"hard_swish"
,
1
],
# output 3 -> out_index=11
[
5
,
672
,
160
,
True
,
"hard_swish"
,
2
],
[
5
,
960
,
160
,
True
,
"hard_swish"
,
1
],
[
5
,
960
,
160
,
True
,
"hard_swish"
,
1
],
# output 3 -> out_index=14
[
5
,
960
,
160
,
True
,
"hard_swish"
,
1
],
# output 3 -> out_index=14
]
self
.
out_indices
=
[
2
,
5
,
11
,
14
]
...
...
@@ -98,17 +110,17 @@ class MobileNetV3(fluid.dygraph.Layer):
elif
model_name
==
"small"
:
self
.
cfg
=
[
# k, exp, c, se, nl, s,
[
3
,
16
,
16
,
True
,
"relu"
,
2
],
# output 1 -> out_index=0
[
3
,
16
,
16
,
True
,
"relu"
,
2
],
# output 1 -> out_index=0
[
3
,
72
,
24
,
False
,
"relu"
,
2
],
[
3
,
88
,
24
,
False
,
"relu"
,
1
],
# output 2 -> out_index=3
[
3
,
88
,
24
,
False
,
"relu"
,
1
],
# output 2 -> out_index=3
[
5
,
96
,
40
,
True
,
"hard_swish"
,
2
],
[
5
,
240
,
40
,
True
,
"hard_swish"
,
1
],
[
5
,
240
,
40
,
True
,
"hard_swish"
,
1
],
[
5
,
120
,
48
,
True
,
"hard_swish"
,
1
],
[
5
,
144
,
48
,
True
,
"hard_swish"
,
1
],
# output 3 -> out_index=7
[
5
,
144
,
48
,
True
,
"hard_swish"
,
1
],
# output 3 -> out_index=7
[
5
,
288
,
96
,
True
,
"hard_swish"
,
2
],
[
5
,
576
,
96
,
True
,
"hard_swish"
,
1
],
[
5
,
576
,
96
,
True
,
"hard_swish"
,
1
],
# output 4 -> out_index=10
[
5
,
576
,
96
,
True
,
"hard_swish"
,
1
],
# output 4 -> out_index=10
]
self
.
out_indices
=
[
0
,
3
,
7
,
10
]
...
...
@@ -157,7 +169,6 @@ class MobileNetV3(fluid.dygraph.Layer):
self
.
add_sublayer
(
sublayer
=
self
.
block_list
[
-
1
],
name
=
"conv"
+
str
(
i
+
2
))
inplanes
=
make_divisible
(
scale
*
c
)
self
.
last_second_conv
=
ConvBNLayer
(
in_c
=
inplanes
,
...
...
@@ -189,8 +200,10 @@ class MobileNetV3(fluid.dygraph.Layer):
param_attr
=
ParamAttr
(
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
self
.
init_weight
(
backbone_pretrained
)
def
modify_bottle_params
(
self
,
output_stride
=
None
):
if
output_stride
is
not
None
and
output_stride
%
2
!=
0
:
raise
Exception
(
"output stride must to be even number"
)
if
output_stride
is
not
None
:
...
...
@@ -201,9 +214,9 @@ class MobileNetV3(fluid.dygraph.Layer):
if
stride
>
output_stride
:
rate
=
rate
*
_cfg
[
-
1
]
self
.
cfg
[
i
][
-
1
]
=
1
self
.
dilation_cfg
[
i
]
=
rate
def
forward
(
self
,
inputs
,
label
=
None
,
dropout_prob
=
0.2
):
x
=
self
.
conv1
(
inputs
)
# A feature list saves each downsampling feature.
...
...
@@ -223,6 +236,19 @@ class MobileNetV3(fluid.dygraph.Layer):
return
x
,
feat_list
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
...
...
@@ -240,7 +266,7 @@ class ConvBNLayer(fluid.dygraph.Layer):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
if_act
=
if_act
self
.
act
=
act
self
.
conv
=
fluid
.
dygraph
.
Conv2D
(
num_channels
=
in_c
,
num_filters
=
out_c
,
...
...
@@ -263,7 +289,7 @@ class ConvBNLayer(fluid.dygraph.Layer):
name
=
name
+
"_bn_offset"
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
)))
self
.
_act_op
=
layer_utils
.
Activation
(
act
=
None
)
def
forward
(
self
,
x
):
...
...
@@ -304,14 +330,15 @@ class ResidualUnit(fluid.dygraph.Layer):
if_act
=
True
,
act
=
act
,
name
=
name
+
"_expand"
)
self
.
bottleneck_conv
=
ConvBNLayer
(
in_c
=
mid_c
,
out_c
=
mid_c
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
get_padding_same
(
filter_size
,
dilation
),
#int((filter_size - 1) // 2) + (dilation - 1),
padding
=
get_padding_same
(
filter_size
,
dilation
),
#int((filter_size - 1) // 2) + (dilation - 1),
dilation
=
dilation
,
num_groups
=
mid_c
,
if_act
=
True
,
...
...
@@ -329,6 +356,7 @@ class ResidualUnit(fluid.dygraph.Layer):
act
=
None
,
name
=
name
+
"_linear"
)
self
.
dilation
=
dilation
def
forward
(
self
,
inputs
):
x
=
self
.
expand_conv
(
inputs
)
x
=
self
.
bottleneck_conv
(
x
)
...
...
@@ -386,6 +414,7 @@ def MobileNetV3_small_x0_75(**kwargs):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
0.75
,
**
kwargs
)
return
model
@
manager
.
BACKBONES
.
add_component
def
MobileNetV3_small_x1_0
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
1.0
,
**
kwargs
)
...
...
@@ -411,6 +440,7 @@ def MobileNetV3_large_x0_75(**kwargs):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
0.75
,
**
kwargs
)
return
model
@
manager
.
BACKBONES
.
add_component
def
MobileNetV3_large_x1_0
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
1.0
,
**
kwargs
)
...
...
dygraph/models/architectures/resnet_vd.py
浏览文件 @
e3637a3c
...
...
@@ -30,6 +30,7 @@ from paddle.nn import SyncBatchNorm as BatchNorm
from
dygraph.utils
import
utils
from
dygraph.models.architectures
import
layer_utils
from
dygraph.cvlibs
import
manager
from
dygraph.utils
import
utils
__all__
=
[
"ResNet18_vd"
,
"ResNet34_vd"
,
"ResNet50_vd"
,
"ResNet101_vd"
,
"ResNet152_vd"
...
...
@@ -47,18 +48,23 @@ class ConvBNLayer(fluid.dygraph.Layer):
groups
=
1
,
is_vd_mode
=
False
,
act
=
None
,
name
=
None
,
):
name
=
None
,
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
is_vd_mode
=
is_vd_mode
self
.
_pool2d_avg
=
Pool2D
(
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
,
ceil_mode
=
True
)
pool_size
=
2
,
pool_stride
=
2
,
pool_padding
=
0
,
pool_type
=
'avg'
,
ceil_mode
=
True
)
self
.
_conv
=
Conv2D
(
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
if
dilation
==
1
else
0
,
padding
=
(
filter_size
-
1
)
//
2
if
dilation
==
1
else
0
,
dilation
=
dilation
,
groups
=
groups
,
act
=
None
,
...
...
@@ -125,19 +131,20 @@ class BottleneckBlock(fluid.dygraph.Layer):
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
stride
=
1
,
is_vd_mode
=
False
if
if_first
or
stride
==
1
else
True
,
is_vd_mode
=
False
if
if_first
or
stride
==
1
else
True
,
name
=
name
+
"_branch1"
)
self
.
shortcut
=
shortcut
def
forward
(
self
,
inputs
):
y
=
self
.
conv0
(
inputs
)
####################################################################
# If given dilation rate > 1, using corresponding padding
if
self
.
dilation
>
1
:
padding
=
self
.
dilation
y
=
fluid
.
layers
.
pad
(
y
,
[
0
,
0
,
0
,
0
,
padding
,
padding
,
padding
,
padding
])
y
=
fluid
.
layers
.
pad
(
y
,
[
0
,
0
,
0
,
0
,
padding
,
padding
,
padding
,
padding
])
#####################################################################
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
...
...
@@ -196,15 +203,21 @@ class BasicBlock(fluid.dygraph.Layer):
else
:
short
=
self
.
short
(
inputs
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
)
layer_helper
=
LayerHelper
(
self
.
full_name
(),
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
)
class
ResNet_vd
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
1000
,
output_stride
=
None
,
multi_grid
=
(
1
,
2
,
4
),
**
kwargs
):
def
__init__
(
self
,
backbone_pretrained
=
None
,
layers
=
50
,
class_dim
=
1000
,
output_stride
=
None
,
multi_grid
=
(
1
,
2
,
4
),
**
kwargs
):
super
(
ResNet_vd
,
self
).
__init__
()
self
.
layers
=
layers
supported_layers
=
[
18
,
34
,
50
,
101
,
152
,
200
]
assert
layers
in
supported_layers
,
\
...
...
@@ -221,11 +234,11 @@ class ResNet_vd(fluid.dygraph.Layer):
depth
=
[
3
,
8
,
36
,
3
]
elif
layers
==
200
:
depth
=
[
3
,
12
,
48
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
if
layers
>=
50
else
[
64
,
64
,
128
,
256
]
num_channels
=
[
64
,
256
,
512
,
1024
]
if
layers
>=
50
else
[
64
,
64
,
128
,
256
]
num_filters
=
[
64
,
128
,
256
,
512
]
dilation_dict
=
None
dilation_dict
=
None
if
output_stride
==
8
:
dilation_dict
=
{
2
:
2
,
3
:
4
}
elif
output_stride
==
16
:
...
...
@@ -254,13 +267,13 @@ class ResNet_vd(fluid.dygraph.Layer):
name
=
"conv1_3"
)
self
.
pool2d_max
=
Pool2D
(
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
# self.block_list = []
self
.
stage_list
=
[]
if
layers
>=
50
:
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
block_list
=
[]
block_list
=
[]
for
i
in
range
(
depth
[
block
]):
if
layers
in
[
101
,
152
]
and
block
==
2
:
if
i
==
0
:
...
...
@@ -269,11 +282,12 @@ class ResNet_vd(fluid.dygraph.Layer):
conv_name
=
"res"
+
str
(
block
+
2
)
+
"b"
+
str
(
i
)
else
:
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
###############################################################################
# Add dilation rate for some segmentation tasks, if dilation_dict is not None.
dilation_rate
=
dilation_dict
[
block
]
if
dilation_dict
and
block
in
dilation_dict
else
1
dilation_rate
=
dilation_dict
[
block
]
if
dilation_dict
and
block
in
dilation_dict
else
1
# Actually block here is 'stage', and i is 'block' in 'stage'
# At the stage 4, expand the the dilation_rate using multi_grid, default (1, 2, 4)
if
block
==
3
:
...
...
@@ -284,9 +298,11 @@ class ResNet_vd(fluid.dygraph.Layer):
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
num_channels
=
num_channels
[
block
]
if
i
==
0
else
num_filters
[
block
]
*
4
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
and
dilation_rate
==
1
else
1
,
stride
=
2
if
i
==
0
and
block
!=
0
and
dilation_rate
==
1
else
1
,
shortcut
=
shortcut
,
if_first
=
block
==
i
==
0
,
name
=
conv_name
,
...
...
@@ -298,7 +314,7 @@ class ResNet_vd(fluid.dygraph.Layer):
else
:
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
block_list
=
[]
block_list
=
[]
for
i
in
range
(
depth
[
block
]):
conv_name
=
"res"
+
str
(
block
+
2
)
+
chr
(
97
+
i
)
basic_block
=
self
.
add_sublayer
(
...
...
@@ -330,6 +346,8 @@ class ResNet_vd(fluid.dygraph.Layer):
name
=
"fc_0.w_0"
),
bias_attr
=
ParamAttr
(
name
=
"fc_0.b_0"
))
self
.
init_weight
(
backbone_pretrained
)
def
forward
(
self
,
inputs
):
y
=
self
.
conv1_1
(
inputs
)
y
=
self
.
conv1_2
(
y
)
...
...
@@ -343,7 +361,7 @@ class ResNet_vd(fluid.dygraph.Layer):
y
=
block
(
y
)
#print("stage {} block {}".format(i+1, j+1), y.shape)
feat_list
.
append
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_channels
])
y
=
self
.
out
(
y
)
...
...
@@ -355,8 +373,18 @@ class ResNet_vd(fluid.dygraph.Layer):
# if os.path.exists(pretrained_model):
# utils.load_pretrained_model(self, pretrained_model)
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
def
ResNet18_vd
(
**
args
):
...
...
@@ -368,11 +396,13 @@ def ResNet34_vd(**args):
model
=
ResNet_vd
(
layers
=
34
,
**
args
)
return
model
@
manager
.
BACKBONES
.
add_component
def
ResNet50_vd
(
**
args
):
model
=
ResNet_vd
(
layers
=
50
,
**
args
)
return
model
@
manager
.
BACKBONES
.
add_component
def
ResNet101_vd
(
**
args
):
model
=
ResNet_vd
(
layers
=
101
,
**
args
)
...
...
@@ -386,4 +416,4 @@ def ResNet152_vd(**args):
def
ResNet200_vd
(
**
args
):
model
=
ResNet_vd
(
layers
=
200
,
**
args
)
return
model
\ No newline at end of file
return
model
dygraph/models/architectures/xception_deeplab.py
浏览文件 @
e3637a3c
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
...
...
@@ -7,6 +23,7 @@ from paddle.nn import SyncBatchNorm as BatchNorm
from
dygraph.models.architectures
import
layer_utils
from
dygraph.cvlibs
import
manager
from
dygraph.utils
import
utils
__all__
=
[
"Xception41_deeplab"
,
"Xception65_deeplab"
,
"Xception71_deeplab"
]
...
...
@@ -86,11 +103,11 @@ class ConvBNLayer(fluid.dygraph.Layer):
momentum
=
0.99
,
weight_attr
=
ParamAttr
(
name
=
name
+
"/BatchNorm/gamma"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"/BatchNorm/beta"
))
self
.
_act_op
=
layer_utils
.
Activation
(
act
=
act
)
def
forward
(
self
,
inputs
):
return
self
.
_act_op
(
self
.
_bn
(
self
.
_conv
(
inputs
)))
...
...
@@ -121,7 +138,7 @@ class Seperate_Conv(fluid.dygraph.Layer):
momentum
=
0.99
,
weight_attr
=
ParamAttr
(
name
=
name
+
"/depthwise/BatchNorm/gamma"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"/depthwise/BatchNorm/beta"
))
self
.
_act_op1
=
layer_utils
.
Activation
(
act
=
act
)
self
.
_conv2
=
Conv2D
(
...
...
@@ -139,9 +156,8 @@ class Seperate_Conv(fluid.dygraph.Layer):
momentum
=
0.99
,
weight_attr
=
ParamAttr
(
name
=
name
+
"/pointwise/BatchNorm/gamma"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"/pointwise/BatchNorm/beta"
))
self
.
_act_op2
=
layer_utils
.
Activation
(
act
=
act
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv1
(
inputs
)
...
...
@@ -254,11 +270,16 @@ class Xception_Block(fluid.dygraph.Layer):
class
XceptionDeeplab
(
fluid
.
dygraph
.
Layer
):
#def __init__(self, backbone, class_dim=1000):
# add output_stride
def
__init__
(
self
,
backbone
,
output_stride
=
16
,
class_dim
=
1000
,
**
kwargs
):
def
__init__
(
self
,
backbone
,
backbone_pretrained
=
None
,
output_stride
=
16
,
class_dim
=
1000
,
**
kwargs
):
super
(
XceptionDeeplab
,
self
).
__init__
()
bottleneck_params
=
gen_bottleneck_params
(
backbone
)
...
...
@@ -280,7 +301,6 @@ class XceptionDeeplab(fluid.dygraph.Layer):
padding
=
1
,
act
=
"relu"
,
name
=
self
.
backbone
+
"/entry_flow/conv2"
)
"""
bottleneck_params = {
"entry_flow": (3, [2, 2, 2], [128, 256, 728]),
...
...
@@ -381,6 +401,8 @@ class XceptionDeeplab(fluid.dygraph.Layer):
param_attr
=
ParamAttr
(
name
=
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_bias"
))
self
.
init_weight
(
backbone_pretrained
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv1
(
inputs
)
x
=
self
.
_conv2
(
x
)
...
...
@@ -394,18 +416,32 @@ class XceptionDeeplab(fluid.dygraph.Layer):
x
=
self
.
_exit_flow_1
(
x
)
x
=
self
.
_exit_flow_2
(
x
)
feat_list
.
append
(
x
)
x
=
self
.
_drop
(
x
)
x
=
self
.
_pool
(
x
)
x
=
fluid
.
layers
.
squeeze
(
x
,
axes
=
[
2
,
3
])
x
=
self
.
_fc
(
x
)
return
x
,
feat_list
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
def
Xception41_deeplab
(
**
args
):
model
=
XceptionDeeplab
(
'xception_41'
,
**
args
)
return
model
@
manager
.
BACKBONES
.
add_component
def
Xception65_deeplab
(
**
args
):
model
=
XceptionDeeplab
(
"xception_65"
,
**
args
)
...
...
@@ -414,4 +450,4 @@ def Xception65_deeplab(**args):
def
Xception71_deeplab
(
**
args
):
model
=
XceptionDeeplab
(
"xception_71"
,
**
args
)
return
model
\ No newline at end of file
return
model
dygraph/models/deeplab.py
浏览文件 @
e3637a3c
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
from
dygraph.cvlibs
import
manager
...
...
@@ -23,10 +22,12 @@ from paddle.fluid.dygraph import Conv2D
from
dygraph.utils
import
utils
__all__
=
[
'DeepLabV3P'
,
"deeplabv3p_resnet101_vd"
,
"deeplabv3p_resnet101_vd_os8"
,
"deeplabv3p_resnet50_vd"
,
"deeplabv3p_resnet50_vd_os8"
,
"deeplabv3p_xception65_deeplab"
,
"deeplabv3p_mobilenetv3_large"
,
"deeplabv3p_mobilenetv3_small"
]
__all__
=
[
'DeepLabV3P'
,
"deeplabv3p_resnet101_vd"
,
"deeplabv3p_resnet101_vd_os8"
,
"deeplabv3p_resnet50_vd"
,
"deeplabv3p_resnet50_vd_os8"
,
"deeplabv3p_xception65_deeplab"
,
"deeplabv3p_mobilenetv3_large"
,
"deeplabv3p_mobilenetv3_small"
]
class
ImageAverage
(
dygraph
.
Layer
):
...
...
@@ -40,9 +41,8 @@ class ImageAverage(dygraph.Layer):
def
__init__
(
self
,
num_channels
):
super
(
ImageAverage
,
self
).
__init__
()
self
.
conv_bn_relu
=
layer_utils
.
ConvBnRelu
(
num_channels
,
num_filters
=
256
,
filter_size
=
1
)
self
.
conv_bn_relu
=
layer_utils
.
ConvBnRelu
(
num_channels
,
num_filters
=
256
,
filter_size
=
1
)
def
forward
(
self
,
input
):
x
=
fluid
.
layers
.
reduce_mean
(
input
,
dim
=
[
2
,
3
],
keep_dim
=
True
)
...
...
@@ -69,44 +69,49 @@ class ASPP(dygraph.Layer):
elif
output_stride
==
8
:
aspp_ratios
=
(
12
,
24
,
36
)
else
:
raise
NotImplementedError
(
"Only support output_stride is 8 or 16, but received{}"
.
format
(
output_stride
))
raise
NotImplementedError
(
"Only support output_stride is 8 or 16, but received{}"
.
format
(
output_stride
))
self
.
image_average
=
ImageAverage
(
num_channels
=
in_channels
)
# The first aspp using 1*1 conv
self
.
aspp1
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
256
,
filter_size
=
1
,
using_sep_conv
=
False
)
self
.
aspp1
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
256
,
filter_size
=
1
,
using_sep_conv
=
False
)
# The second aspp using 3*3 (separable) conv at dilated rate aspp_ratios[0]
self
.
aspp2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
256
,
filter_size
=
3
,
using_sep_conv
=
using_sep_conv
,
dilation
=
aspp_ratios
[
0
],
padding
=
aspp_ratios
[
0
])
self
.
aspp2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
256
,
filter_size
=
3
,
using_sep_conv
=
using_sep_conv
,
dilation
=
aspp_ratios
[
0
],
padding
=
aspp_ratios
[
0
])
# The Third aspp using 3*3 (separable) conv at dilated rate aspp_ratios[1]
self
.
aspp3
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
256
,
filter_size
=
3
,
using_sep_conv
=
using_sep_conv
,
dilation
=
aspp_ratios
[
1
],
padding
=
aspp_ratios
[
1
])
self
.
aspp3
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
256
,
filter_size
=
3
,
using_sep_conv
=
using_sep_conv
,
dilation
=
aspp_ratios
[
1
],
padding
=
aspp_ratios
[
1
])
# The Third aspp using 3*3 (separable) conv at dilated rate aspp_ratios[2]
self
.
aspp4
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
256
,
filter_size
=
3
,
using_sep_conv
=
using_sep_conv
,
dilation
=
aspp_ratios
[
2
],
padding
=
aspp_ratios
[
2
])
self
.
aspp4
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
256
,
filter_size
=
3
,
using_sep_conv
=
using_sep_conv
,
dilation
=
aspp_ratios
[
2
],
padding
=
aspp_ratios
[
2
])
# After concat op, using 1*1 conv
self
.
conv_bn_relu
=
layer_utils
.
ConvBnRelu
(
num_channels
=
1280
,
num_filters
=
256
,
filter_size
=
1
)
self
.
conv_bn_relu
=
layer_utils
.
ConvBnRelu
(
num_channels
=
1280
,
num_filters
=
256
,
filter_size
=
1
)
def
forward
(
self
,
x
):
...
...
@@ -136,23 +141,23 @@ class Decoder(dygraph.Layer):
def
__init__
(
self
,
num_classes
,
in_channels
,
using_sep_conv
=
True
):
super
(
Decoder
,
self
).
__init__
()
self
.
conv_bn_relu1
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
48
,
filter_size
=
1
)
self
.
conv_bn_relu2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
304
,
num_filters
=
256
,
filter_size
=
3
,
using_sep_conv
=
using_sep_conv
,
padding
=
1
)
self
.
conv_bn_relu3
=
layer_utils
.
ConvBnRelu
(
num_channels
=
256
,
num_filter
s
=
256
,
filter_size
=
3
,
using_sep_conv
=
using_sep_conv
,
padding
=
1
)
self
.
conv
=
Conv2D
(
num_channels
=
256
,
num_filters
=
num_classes
,
filter_size
=
1
)
self
.
conv_bn_relu1
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
48
,
filter_size
=
1
)
self
.
conv_bn_relu2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
304
,
num_filters
=
256
,
filter_size
=
3
,
using_sep_conv
=
using_sep_conv
,
padding
=
1
)
self
.
conv_bn_relu3
=
layer_utils
.
ConvBnRelu
(
num_channel
s
=
256
,
num_filters
=
256
,
filter_size
=
3
,
using_sep_conv
=
using_sep_conv
,
padding
=
1
)
self
.
conv
=
Conv2D
(
num_channels
=
256
,
num_filters
=
num_classes
,
filter_size
=
1
)
def
forward
(
self
,
x
,
low_level_feat
):
low_level_feat
=
self
.
conv_bn_relu1
(
low_level_feat
)
...
...
@@ -164,6 +169,7 @@ class Decoder(dygraph.Layer):
return
x
@
manager
.
MODELS
.
add_component
class
DeepLabV3P
(
dygraph
.
Layer
):
"""
The DeepLabV3P consists of three main components, Backbone, ASPP and Decoder
...
...
@@ -173,9 +179,11 @@ class DeepLabV3P(dygraph.Layer):
(https://arxiv.org/abs/1802.02611)
Args:
backbone (str): backbone name, currently support Xception65, Resnet101_vd. Default Resnet101_vd.
num_classes (int): the unique number of target classes.
backbone (paddle.nn.Layer): backbone networks, currently support Xception65, Resnet101_vd. Default Resnet101_vd.
num_classes (int): the unique number of target classes. Default 2
.
model_pretrained (str): the path of pretrained model
.
output_stride (int): the ratio of input size and final feature size. Default 16.
...
...
@@ -193,28 +201,29 @@ class DeepLabV3P(dygraph.Layer):
using_sep_conv (bool): a bool value indicates whether using separable convolutions
in ASPP and Decoder components. Default True.
pretrained_model (str): the pretrained_model path of backbone.
"""
def
__init__
(
self
,
num_classes
,
backbone
,
num_classes
=
2
,
model_pretrained
=
None
,
output_stride
=
16
,
backbone_indices
=
(
0
,
3
),
backbone_channels
=
(
256
,
2048
),
ignore_index
=
255
,
using_sep_conv
=
True
,
pretrained_model
=
None
):
using_sep_conv
=
True
):
super
(
DeepLabV3P
,
self
).
__init__
()
self
.
backbone
=
manager
.
BACKBONES
[
backbone
](
output_stride
=
output_stride
)
# self.backbone = manager.BACKBONES[backbone](output_stride=output_stride)
self
.
backbone
=
backbone
self
.
aspp
=
ASPP
(
output_stride
,
backbone_channels
[
1
],
using_sep_conv
)
self
.
decoder
=
Decoder
(
num_classes
,
backbone_channels
[
0
],
using_sep_conv
)
self
.
decoder
=
Decoder
(
num_classes
,
backbone_channels
[
0
],
using_sep_conv
)
self
.
ignore_index
=
ignore_index
self
.
EPS
=
1e-5
self
.
backbone_indices
=
backbone_indices
self
.
init_weight
(
pretrained_model
)
self
.
init_weight
(
model_pretrained
)
def
forward
(
self
,
input
,
label
=
None
):
...
...
@@ -238,14 +247,14 @@ class DeepLabV3P(dygraph.Layer):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the p
retrained_model path of backbone
. Defaults to None.
pretrained_model ([str], optional): the p
ath of pretrained model
. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
.
backbone
,
pretrained_model
)
# utils.load_pretrained_model(self, pretrained_model)
# for param in self.backbone.parameters():
# param.stop_gradient = True
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
def
_get_loss
(
self
,
logit
,
label
):
"""
...
...
@@ -271,7 +280,7 @@ class DeepLabV3P(dygraph.Layer):
loss
=
loss
*
mask
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
/
(
fluid
.
layers
.
mean
(
mask
)
+
self
.
EPS
)
fluid
.
layers
.
mean
(
mask
)
+
self
.
EPS
)
label
.
stop_gradient
=
True
mask
.
stop_gradient
=
True
...
...
@@ -290,52 +299,65 @@ def build_decoder(num_classes, using_sep_conv):
@
manager
.
MODELS
.
add_component
def
deeplabv3p_resnet101_vd
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'ResNet101_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
DeepLabV3P
(
backbone
=
'ResNet101_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_resnet101_vd_os8
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'ResNet101_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
DeepLabV3P
(
backbone
=
'ResNet101_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_resnet50_vd
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'ResNet50_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
DeepLabV3P
(
backbone
=
'ResNet50_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_resnet50_vd_os8
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'ResNet50_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
DeepLabV3P
(
backbone
=
'ResNet50_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_xception65_deeplab
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'Xception65_deeplab'
,
pretrained_model
=
pretrained_model
,
backbone_indices
=
(
0
,
1
),
backbone_channels
=
(
128
,
2048
),
**
kwargs
)
return
DeepLabV3P
(
backbone
=
'Xception65_deeplab'
,
pretrained_model
=
pretrained_model
,
backbone_indices
=
(
0
,
1
),
backbone_channels
=
(
128
,
2048
),
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_mobilenetv3_large
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'MobileNetV3_large_x1_0'
,
pretrained_model
=
pretrained_model
,
backbone_indices
=
(
0
,
3
),
backbone_channels
=
(
24
,
160
),
**
kwargs
)
return
DeepLabV3P
(
backbone
=
'MobileNetV3_large_x1_0'
,
pretrained_model
=
pretrained_model
,
backbone_indices
=
(
0
,
3
),
backbone_channels
=
(
24
,
160
),
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_mobilenetv3_small
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'MobileNetV3_small_x1_0'
,
pretrained_model
=
pretrained_model
,
backbone_indices
=
(
0
,
3
),
backbone_channels
=
(
16
,
96
),
**
kwargs
)
return
DeepLabV3P
(
backbone
=
'MobileNetV3_small_x1_0'
,
pretrained_model
=
pretrained_model
,
backbone_indices
=
(
0
,
3
),
backbone_channels
=
(
16
,
96
),
**
kwargs
)
dygraph/models/fcn.py
浏览文件 @
e3637a3c
...
...
@@ -25,6 +25,7 @@ from paddle.nn import SyncBatchNorm as BatchNorm
from
dygraph.cvlibs
import
manager
from
dygraph
import
utils
from
dygraph.cvlibs
import
param_init
__all__
=
[
"fcn_hrnet_w18_small_v1"
,
"fcn_hrnet_w18_small_v2"
,
"fcn_hrnet_w18"
,
...
...
@@ -33,114 +34,133 @@ __all__ = [
]
@
manager
.
MODELS
.
add_component
class
FCN
(
fluid
.
dygraph
.
Layer
):
"""
Fully Convolutional Networks for Semantic Segmentation.
https://arxiv.org/abs/1411.4038
Args:
backbone (str): backbone name,
num_classes (int): the unique number of target classes.
in_channels (int): the channels of input feature maps.
backbone (paddle.nn.Layer): backbone networks.
model_pretrained (str): the path of pretrained model.
backbone_indices (tuple): one values in the tuple indicte the indices of output of backbone.Default -1.
backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
channels (int): channels after conv layer before the last one.
pretrained_model (str): the path of pretrained model.
ignore_index (int): the value of ground-truth mask would be ignored while computing loss or doing evaluation. Default 255.
"""
def
__init__
(
self
,
backbone
,
num_classes
,
in_channels
,
backbone
,
model_pretrained
=
None
,
backbone_indices
=
(
-
1
,
),
backbone_channels
=
(
270
,
),
channels
=
None
,
pretrained_model
=
None
,
ignore_index
=
255
,
**
kwargs
):
super
(
FCN
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
backbone_indices
=
backbone_indices
self
.
ignore_index
=
ignore_index
self
.
EPS
=
1e-5
if
channels
is
None
:
channels
=
in_channels
channels
=
backbone_channels
[
backbone_indices
[
0
]]
self
.
backbone
=
manager
.
BACKBONES
[
backbone
](
**
kwargs
)
self
.
backbone
=
backbone
self
.
conv_last_2
=
ConvBNLayer
(
num_channels
=
in_channels
,
num_channels
=
backbone_channels
[
backbone_indices
[
0
]]
,
num_filters
=
channels
,
filter_size
=
1
,
stride
=
1
,
name
=
'conv-2'
)
stride
=
1
)
self
.
conv_last_1
=
Conv2D
(
num_channels
=
channels
,
num_filters
=
self
.
num_classes
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
param_attr
=
ParamAttr
(
initializer
=
Normal
(
scale
=
0.001
),
name
=
'conv-1_weights'
))
self
.
init_weight
(
pretrained_model
)
padding
=
0
)
self
.
init_weight
(
model_pretrained
)
def
forward
(
self
,
x
,
label
=
None
,
mode
=
'train'
):
def
forward
(
self
,
x
):
input_shape
=
x
.
shape
[
2
:]
x
=
self
.
backbone
(
x
)
fea_list
=
self
.
backbone
(
x
)
x
=
fea_list
[
self
.
backbone_indices
[
0
]]
x
=
self
.
conv_last_2
(
x
)
logit
=
self
.
conv_last_1
(
x
)
logit
=
fluid
.
layers
.
resize_bilinear
(
logit
,
input_shape
)
if
self
.
training
:
if
label
is
None
:
raise
Exception
(
'Label is need during training'
)
return
self
.
_get_loss
(
logit
,
label
)
else
:
score_map
=
fluid
.
layers
.
softmax
(
logit
,
axis
=
1
)
score_map
=
fluid
.
layers
.
transpose
(
score_map
,
[
0
,
2
,
3
,
1
])
pred
=
fluid
.
layers
.
argmax
(
score_map
,
axis
=
3
)
pred
=
fluid
.
layers
.
unsqueeze
(
pred
,
axes
=
[
3
])
return
pred
,
score_map
return
[
logit
]
# if self.training:
# if label is None:
# raise Exception('Label is need during training')
# return self._get_loss(logit, label)
# else:
# score_map = fluid.layers.softmax(logit, axis=1)
# score_map = fluid.layers.transpose(score_map, [0, 2, 3, 1])
# pred = fluid.layers.argmax(score_map, axis=3)
# pred = fluid.layers.unsqueeze(pred, axes=[3])
# return pred, score_map
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the p
retrained_model path of backbone
. Defaults to None.
pretrained_model ([str], optional): the p
ath of pretrained model
. Defaults to None.
"""
params
=
self
.
parameters
()
for
param
in
params
:
param_name
=
param
.
name
if
'batch_norm'
in
param_name
:
if
'w_0'
in
param_name
:
param_init
.
constant_init
(
param
,
1.0
)
elif
'b_0'
in
param_name
:
param_init
.
constant_init
(
param
,
0.0
)
if
'conv'
in
param_name
and
'w_0'
in
param_name
:
param_init
.
normal_init
(
param
,
scale
=
0.001
)
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
.
backbone
,
pretrained_model
)
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
def
_get_loss
(
self
,
logit
,
label
):
"""
compute forward loss of the model
Args:
logit (tensor): the logit of model output
label (tensor): ground truth
Returns:
avg_loss (tensor): forward loss
"""
logit
=
fluid
.
layers
.
transpose
(
logit
,
[
0
,
2
,
3
,
1
])
label
=
fluid
.
layers
.
transpose
(
label
,
[
0
,
2
,
3
,
1
])
mask
=
label
!=
self
.
ignore_index
mask
=
fluid
.
layers
.
cast
(
mask
,
'float32'
)
loss
,
probs
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logit
,
label
,
ignore_index
=
self
.
ignore_index
,
return_softmax
=
True
,
axis
=-
1
)
loss
=
loss
*
mask
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
/
(
fluid
.
layers
.
mean
(
mask
)
+
self
.
EPS
)
label
.
stop_gradient
=
True
mask
.
stop_gradient
=
True
return
avg_loss
#
def _get_loss(self, logit, label):
#
"""
#
compute forward loss of the model
#
Args:
#
logit (tensor): the logit of model output
#
label (tensor): ground truth
#
Returns:
#
avg_loss (tensor): forward loss
#
"""
#
logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
#
label = fluid.layers.transpose(label, [0, 2, 3, 1])
#
mask = label != self.ignore_index
#
mask = fluid.layers.cast(mask, 'float32')
#
loss, probs = fluid.layers.softmax_with_cross_entropy(
#
logit,
#
label,
#
ignore_index=self.ignore_index,
#
return_softmax=True,
#
axis=-1)
#
loss = loss * mask
#
avg_loss = fluid.layers.mean(loss) / (
#
fluid.layers.mean(mask) + self.EPS)
#
label.stop_gradient = True
#
mask.stop_gradient = True
#
return avg_loss
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -150,8 +170,7 @@ class ConvBNLayer(fluid.dygraph.Layer):
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
"relu"
,
name
=
None
):
act
=
"relu"
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
...
...
@@ -161,18 +180,8 @@ class ConvBNLayer(fluid.dygraph.Layer):
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
param_attr
=
ParamAttr
(
initializer
=
Normal
(
scale
=
0.001
),
name
=
name
+
"_weights"
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
weight_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
)),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
)))
self
.
_batch_norm
=
BatchNorm
(
num_filters
)
self
.
act
=
act
def
forward
(
self
,
input
):
...
...
@@ -185,49 +194,49 @@ class ConvBNLayer(fluid.dygraph.Layer):
@
manager
.
MODELS
.
add_component
def
fcn_hrnet_w18_small_v1
(
*
args
,
**
kwargs
):
return
FCN
(
backbone
=
'HRNet_W18_Small_V1'
,
in_channels
=
240
,
**
kwargs
)
return
FCN
(
backbone
=
'HRNet_W18_Small_V1'
,
backbone_channels
=
(
240
)
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
fcn_hrnet_w18_small_v2
(
*
args
,
**
kwargs
):
return
FCN
(
backbone
=
'HRNet_W18_Small_V2'
,
in_channels
=
270
,
**
kwargs
)
return
FCN
(
backbone
=
'HRNet_W18_Small_V2'
,
backbone_channels
=
(
270
)
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
fcn_hrnet_w18
(
*
args
,
**
kwargs
):
return
FCN
(
backbone
=
'HRNet_W18'
,
in_channels
=
270
,
**
kwargs
)
return
FCN
(
backbone
=
'HRNet_W18'
,
backbone_channels
=
(
270
)
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
fcn_hrnet_w30
(
*
args
,
**
kwargs
):
return
FCN
(
backbone
=
'HRNet_W30'
,
in_channels
=
450
,
**
kwargs
)
return
FCN
(
backbone
=
'HRNet_W30'
,
backbone_channels
=
(
450
)
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
fcn_hrnet_w32
(
*
args
,
**
kwargs
):
return
FCN
(
backbone
=
'HRNet_W32'
,
in_channels
=
480
,
**
kwargs
)
return
FCN
(
backbone
=
'HRNet_W32'
,
backbone_channels
=
(
480
)
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
fcn_hrnet_w40
(
*
args
,
**
kwargs
):
return
FCN
(
backbone
=
'HRNet_W40'
,
in_channels
=
600
,
**
kwargs
)
return
FCN
(
backbone
=
'HRNet_W40'
,
backbone_channels
=
(
600
)
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
fcn_hrnet_w44
(
*
args
,
**
kwargs
):
return
FCN
(
backbone
=
'HRNet_W44'
,
in_channels
=
660
,
**
kwargs
)
return
FCN
(
backbone
=
'HRNet_W44'
,
backbone_channels
=
(
660
)
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
fcn_hrnet_w48
(
*
args
,
**
kwargs
):
return
FCN
(
backbone
=
'HRNet_W48'
,
in_channels
=
720
,
**
kwargs
)
return
FCN
(
backbone
=
'HRNet_W48'
,
backbone_channels
=
(
720
)
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
fcn_hrnet_w60
(
*
args
,
**
kwargs
):
return
FCN
(
backbone
=
'HRNet_W60'
,
in_channels
=
900
,
**
kwargs
)
return
FCN
(
backbone
=
'HRNet_W60'
,
backbone_channels
=
(
900
)
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
fcn_hrnet_w64
(
*
args
,
**
kwargs
):
return
FCN
(
backbone
=
'HRNet_W64'
,
in_channels
=
960
,
**
kwargs
)
return
FCN
(
backbone
=
'HRNet_W64'
,
backbone_channels
=
(
960
)
,
**
kwargs
)
dygraph/models/losses/__init__.py
0 → 100644
浏览文件 @
e3637a3c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.cross_entroy_loss
import
CrossEntropyLoss
dygraph/models/losses/cross_entroy_loss.py
0 → 100644
浏览文件 @
e3637a3c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
paddle
import
nn
import
paddle.nn.functional
as
F
from
dygraph.cvlibs
import
manager
@
manager
.
LOSSES
.
add_component
class
CrossEntropyLoss
(
nn
.
CrossEntropyLoss
):
"""
Implements the cross entropy loss function.
Args:
weight (Tensor): Weight tensor, a manual rescaling weight given
to each class and the shape is (C). It has the same dimensions as class
number and the data type is float32, float64. Default ``'None'``.
ignore_index (int64): Specifies a target value that is ignored
and does not contribute to the input gradient. Default ``255``.
reduction (str): Indicate how to average the loss by batch_size,
the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
Default ``'mean'``.
"""
def
__init__
(
self
,
weight
=
None
,
ignore_index
=
255
,
reduction
=
'mean'
):
super
(
CrossEntropyLoss
,
self
).
__init__
(
weight
=
weight
,
ignore_index
=
ignore_index
,
reduction
=
reduction
)
self
.
EPS
=
1e-5
if
self
.
reduction
not
in
[
'sum'
,
'mean'
,
'none'
]:
raise
ValueError
(
"The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or"
" 'none', but received %s, which is not allowed."
%
self
.
reduction
)
def
forward
(
self
,
logit
,
label
):
"""
Forward computation.
Args:
logit (Tensor): logit tensor, the data type is float32, float64. Shape is
(N, C), where C is number of classes, and if shape is more than 2D, this
is (N, C, D1, D2,..., Dk), k >= 1.
label (Variable): label tensor, the data type is int64. Shape is (N), where each
value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
(N, D1, D2,..., Dk), k >= 1.
"""
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
logit
,
label
,
weight
=
self
.
weight
,
ignore_index
=
self
.
ignore_index
,
reduction
=
self
.
reduction
)
mask
=
label
!=
self
.
ignore_index
mask
=
paddle
.
cast
(
mask
,
'float32'
)
avg_loss
=
loss
/
(
paddle
.
mean
(
mask
)
+
self
.
EPS
)
label
.
stop_gradient
=
True
mask
.
stop_gradient
=
True
return
avg_loss
dygraph/models/ocrnet.py
浏览文件 @
e3637a3c
...
...
@@ -12,11 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
Sequential
,
Conv2D
from
dygraph.cvlibs
import
manager
from
dygraph.models.architectures.layer_utils
import
ConvBnRelu
from
dygraph
import
utils
class
SpatialGatherBlock
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -116,8 +119,9 @@ class ObjectAttentionBlock(fluid.dygraph.Layer):
class
OCRNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_classes
,
in_channels
,
backbone
,
model_pretrained
=
None
,
in_channels
=
None
,
ocr_mid_channels
=
512
,
ocr_key_channels
=
256
,
ignore_index
=
255
):
...
...
@@ -139,6 +143,8 @@ class OCRNet(fluid.dygraph.Layer):
ConvBnRelu
(
in_channels
,
in_channels
,
3
,
padding
=
1
),
Conv2D
(
in_channels
,
self
.
num_classes
,
1
))
self
.
init_weight
(
model_pretrained
)
def
forward
(
self
,
x
,
label
=
None
):
feats
=
self
.
backbone
(
x
)
...
...
@@ -164,6 +170,19 @@ class OCRNet(fluid.dygraph.Layer):
pred
=
fluid
.
layers
.
unsqueeze
(
pred
,
axes
=
[
3
])
return
pred
,
score_map
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model.. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
def
_get_loss
(
self
,
logit
,
label
):
"""
compute forward loss of the model
...
...
dygraph/models/pspnet.py
浏览文件 @
e3637a3c
...
...
@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
paddle.nn.functional
as
F
...
...
@@ -29,15 +28,17 @@ class PSPNet(fluid.dygraph.Layer):
"""
The PSPNet implementation
The orginal artile refers to
Zhao, Hengshuang, et al. "Pyramid scene parsing network."
The orginal artile refers to
Zhao, Hengshuang, et al. "Pyramid scene parsing network."
Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
(https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf)
Args:
backbone (str): backbone name, currently support Resnet50/101.
num_classes (int): the unique number of target classes.
backbone (Paddle.nn.Layer): backbone name, currently support Resnet50/101.
num_classes (int): the unique number of target classes. Default 2
.
model_pretrained (str): the path of pretrained model
.
output_stride (int): the ratio of input size and final feature size. Default 16.
...
...
@@ -57,42 +58,44 @@ class PSPNet(fluid.dygraph.Layer):
enable_auxiliary_loss (bool): a bool values indictes whether adding auxiliary loss. Default to True.
ignore_index (int): the value of ground-truth mask would be ignored while doing evaluation. Default to 255.
pretrained_model (str): the pretrained_model path of backbone.
"""
def
__init__
(
self
,
num_classes
,
backbone
,
num_classes
=
2
,
model_pretrained
=
None
,
output_stride
=
16
,
backbone_indices
=
(
2
,
3
),
backbone_channels
=
(
1024
,
2048
),
pp_out_channels
=
1024
,
bin_sizes
=
(
1
,
2
,
3
,
6
),
enable_auxiliary_loss
=
True
,
ignore_index
=
255
,
pretrained_model
=
None
):
ignore_index
=
255
):
super
(
PSPNet
,
self
).
__init__
()
self
.
backbone
=
manager
.
BACKBONES
[
backbone
](
output_stride
=
output_stride
,
multi_grid
=
(
1
,
1
,
1
))
# self.backbone = manager.BACKBONES[backbone](output_stride=output_stride,
# multi_grid=(1, 1, 1))
self
.
backbone
=
backbone
self
.
backbone_indices
=
backbone_indices
self
.
psp_module
=
PPModule
(
in_channels
=
backbone_channels
[
1
],
out_channels
=
pp_out_channels
,
bin_sizes
=
bin_sizes
)
self
.
psp_module
=
PPModule
(
in_channels
=
backbone_channels
[
1
],
out_channels
=
pp_out_channels
,
bin_sizes
=
bin_sizes
)
self
.
conv
=
Conv2D
(
num_channels
=
pp_out_channels
,
num_filters
=
num_classes
,
filter_size
=
1
)
self
.
conv
=
Conv2D
(
num_channels
=
pp_out_channels
,
num_filters
=
num_classes
,
filter_size
=
1
)
if
enable_auxiliary_loss
:
self
.
fcn_head
=
model_utils
.
FCNHead
(
in_channels
=
backbone_channels
[
0
],
out_channels
=
num_classes
)
self
.
fcn_head
=
model_utils
.
FCNHead
(
in_channels
=
backbone_channels
[
0
],
out_channels
=
num_classes
)
self
.
enable_auxiliary_loss
=
enable_auxiliary_loss
self
.
ignore_index
=
ignore_index
self
.
init_weight
(
pretrained_model
)
self
.
init_weight
(
model_pretrained
)
def
forward
(
self
,
input
,
label
=
None
):
...
...
@@ -107,7 +110,8 @@ class PSPNet(fluid.dygraph.Layer):
if
self
.
enable_auxiliary_loss
:
auxiliary_feat
=
feat_list
[
self
.
backbone_indices
[
0
]]
auxiliary_logit
=
self
.
fcn_head
(
auxiliary_feat
)
auxiliary_logit
=
fluid
.
layers
.
resize_bilinear
(
auxiliary_logit
,
input
.
shape
[
2
:])
auxiliary_logit
=
fluid
.
layers
.
resize_bilinear
(
auxiliary_logit
,
input
.
shape
[
2
:])
if
self
.
training
:
loss
=
model_utils
.
get_loss
(
logit
,
label
)
...
...
@@ -116,7 +120,6 @@ class PSPNet(fluid.dygraph.Layer):
loss
+=
(
0.4
*
auxiliary_loss
)
return
loss
else
:
pred
,
score_map
=
model_utils
.
get_pred_score_map
(
logit
)
return
pred
,
score_map
...
...
@@ -124,14 +127,15 @@ class PSPNet(fluid.dygraph.Layer):
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the p
retrained_model path of backbone
. Defaults to None.
pretrained_model ([str], optional): the p
ath of pretrained model
. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
.
backbone
,
pretrained_model
)
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
class
PPModule
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -151,19 +155,21 @@ class PPModule(fluid.dygraph.Layer):
self
.
bin_sizes
=
bin_sizes
# we use dimension reduction after pooling mentioned in original implementation.
self
.
stages
=
fluid
.
dygraph
.
LayerList
([
self
.
_make_stage
(
in_channels
,
size
)
for
size
in
bin_sizes
])
self
.
stages
=
fluid
.
dygraph
.
LayerList
(
[
self
.
_make_stage
(
in_channels
,
size
)
for
size
in
bin_sizes
])
self
.
conv_bn_relu2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
*
2
,
num_filters
=
out_channels
,
filter_size
=
3
,
padding
=
1
)
self
.
conv_bn_relu2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
*
2
,
num_filters
=
out_channels
,
filter_size
=
3
,
padding
=
1
)
def
_make_stage
(
self
,
in_channels
,
size
):
"""
Create one pooling layer.
In our implementation, we adopt the same dimention reduction as the original paper that might be
slightly different with other implementations.
slightly different with other implementations.
After pooling, the channels are reduced to 1/len(bin_sizes) immediately, while some other implementations
keep the channels to be same.
...
...
@@ -180,9 +186,10 @@ class PPModule(fluid.dygraph.Layer):
# this paddle version does not support AdaptiveAvgPool2d, so skip it here.
# prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
conv
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
in_channels
//
len
(
self
.
bin_sizes
),
filter_size
=
1
)
conv
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
in_channels
//
len
(
self
.
bin_sizes
),
filter_size
=
1
)
return
conv
...
...
@@ -190,7 +197,8 @@ class PPModule(fluid.dygraph.Layer):
cat_layers
=
[]
for
i
,
stage
in
enumerate
(
self
.
stages
):
size
=
self
.
bin_sizes
[
i
]
x
=
fluid
.
layers
.
adaptive_pool2d
(
input
,
pool_size
=
(
size
,
size
),
pool_type
=
"max"
)
x
=
fluid
.
layers
.
adaptive_pool2d
(
input
,
pool_size
=
(
size
,
size
),
pool_type
=
"max"
)
x
=
stage
(
x
)
x
=
fluid
.
layers
.
resize_bilinear
(
x
,
out_shape
=
input
.
shape
[
2
:])
cat_layers
.
append
(
x
)
...
...
@@ -204,22 +212,32 @@ class PPModule(fluid.dygraph.Layer):
@
manager
.
MODELS
.
add_component
def
pspnet_resnet101_vd
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
PSPNet
(
backbone
=
'ResNet101_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
PSPNet
(
backbone
=
'ResNet101_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
pspnet_resnet101_vd_os8
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
PSPNet
(
backbone
=
'ResNet101_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
PSPNet
(
backbone
=
'ResNet101_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
pspnet_resnet50_vd
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
PSPNet
(
backbone
=
'ResNet50_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
PSPNet
(
backbone
=
'ResNet50_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
pspnet_resnet50_vd_os8
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
PSPNet
(
backbone
=
'ResNet50_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
PSPNet
(
backbone
=
'ResNet50_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
dygraph/models/unet.py
浏览文件 @
e3637a3c
...
...
@@ -33,7 +33,7 @@ class UNet(fluid.dygraph.Layer):
ignore_index (int): the value of ground-truth mask would be ignored while computing loss or doing evaluation. Default 255.
"""
def
__init__
(
self
,
num_classes
,
pretrained_model
=
None
,
ignore_index
=
255
):
def
__init__
(
self
,
num_classes
,
model_pretrained
=
None
,
ignore_index
=
255
):
super
(
UNet
,
self
).
__init__
()
self
.
encode
=
UnetEncoder
()
self
.
decode
=
UnetDecode
()
...
...
@@ -41,7 +41,7 @@ class UNet(fluid.dygraph.Layer):
self
.
ignore_index
=
ignore_index
self
.
EPS
=
1e-5
self
.
init_weight
(
pretrained_model
)
self
.
init_weight
(
model_pretrained
)
def
forward
(
self
,
x
,
label
=
None
):
encode_data
,
short_cuts
=
self
.
encode
(
x
)
...
...
@@ -60,7 +60,7 @@ class UNet(fluid.dygraph.Layer):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the p
retrained_model path of backbone
. Defaults to None.
pretrained_model ([str], optional): the p
ath of pretrained model
. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
...
...
dygraph/train.py
浏览文件 @
e3637a3c
...
...
@@ -110,6 +110,8 @@ def main(args):
val_dataset
=
cfg
.
val_dataset
if
args
.
do_eval
else
None
losses
=
cfg
.
loss
train
(
cfg
.
model
,
train_dataset
,
...
...
@@ -123,7 +125,8 @@ def main(args):
log_iters
=
args
.
log_iters
,
num_classes
=
train_dataset
.
num_classes
,
num_workers
=
args
.
num_workers
,
use_vdl
=
args
.
use_vdl
)
use_vdl
=
args
.
use_vdl
,
losses
=
losses
)
if
__name__
==
'__main__'
:
...
...
dygraph/transforms/transforms.py
浏览文件 @
e3637a3c
...
...
@@ -55,8 +55,8 @@ class Compose:
if
len
(
outputs
)
==
3
:
label
=
outputs
[
2
]
im
=
permute
(
im
)
if
len
(
outputs
)
==
3
:
label
=
label
[
np
.
newaxis
,
:,
:]
#
if len(outputs) == 3:
#
label = label[np.newaxis, :, :]
return
(
im
,
im_info
,
label
)
...
...
dygraph/utils/config.py
浏览文件 @
e3637a3c
...
...
@@ -35,15 +35,34 @@ class Config(object):
raise
FileNotFoundError
(
'File {} does not exist'
.
format
(
path
))
if
path
.
endswith
(
'yml'
)
or
path
.
endswith
(
'yaml'
):
self
.
_parse_from_yaml
(
path
)
dic
=
self
.
_parse_from_yaml
(
path
)
self
.
_build
(
dic
)
else
:
raise
RuntimeError
(
'Config file should in yaml format!'
)
def
_update_dic
(
self
,
dic
,
base_dic
):
"""
update dic from base_dic
"""
dic
=
dic
.
copy
()
for
key
,
val
in
base_dic
.
items
():
if
isinstance
(
val
,
dict
)
and
key
in
dic
:
dic
[
key
]
=
self
.
_update_dic
(
dic
[
key
],
val
)
else
:
dic
[
key
]
=
val
return
dic
def
_parse_from_yaml
(
self
,
path
:
str
):
'''Parse a yaml file and build config'''
with
codecs
.
open
(
path
,
'r'
,
'utf-8'
)
as
file
:
dic
=
yaml
.
load
(
file
,
Loader
=
yaml
.
FullLoader
)
self
.
_build
(
dic
)
if
'_base_'
in
dic
:
cfg_dir
=
os
.
path
.
dirname
(
path
)
base_path
=
dic
.
pop
(
'_base_'
)
base_path
=
os
.
path
.
join
(
cfg_dir
,
base_path
)
base_dic
=
self
.
_parse_from_yaml
(
base_path
)
dic
=
self
.
_update_dic
(
dic
,
base_dic
)
return
dic
def
_build
(
self
,
dic
:
dict
):
'''Build config from dictionary'''
...
...
@@ -68,6 +87,7 @@ class Config(object):
})
self
.
_loss_cfg
=
dic
.
get
(
'loss'
,
{})
self
.
_losses
=
None
self
.
_optimizer_cfg
=
dic
.
get
(
'optimizer'
,
{})
...
...
@@ -145,14 +165,23 @@ class Config(object):
return
args
@
property
def
loss_type
(
self
)
->
str
:
...
@
property
def
loss_args
(
self
)
->
dict
:
args
=
self
.
_loss_cfg
.
copy
()
args
.
pop
(
'type'
)
return
args
def
loss
(
self
)
->
list
:
if
not
self
.
_losses
:
args
=
self
.
_loss_cfg
.
copy
()
self
.
_losses
=
dict
()
for
key
,
val
in
args
.
items
():
if
key
==
'types'
:
self
.
_losses
[
'types'
]
=
[]
for
item
in
args
[
'types'
]:
self
.
_losses
[
'types'
].
append
(
self
.
_load_object
(
item
))
else
:
self
.
_losses
[
key
]
=
val
if
len
(
self
.
_losses
[
'coef'
])
!=
len
(
self
.
_losses
[
'types'
]):
raise
RuntimeError
(
'The length of coef should equal to types in loss config: {} != {}.'
.
format
(
len
(
self
.
_losses
[
'coef'
]),
len
(
self
.
_losses
[
'types'
])))
return
self
.
_losses
@
property
def
model
(
self
)
->
Callable
:
...
...
@@ -175,7 +204,7 @@ class Config(object):
def
_load_component
(
self
,
com_name
:
str
)
->
Any
:
com_list
=
[
manager
.
MODELS
,
manager
.
BACKBONES
,
manager
.
DATASETS
,
manager
.
TRANSFORMS
manager
.
TRANSFORMS
,
manager
.
LOSSES
]
for
com
in
com_list
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录