Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
1a3f44a5
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1a3f44a5
编写于
9月 03, 2020
作者:
C
chenguowei01
浏览文件
操作
浏览文件
下载
差异文件
Merge commit 'refs/pull/362/head' of
https://github.com/PaddlePaddle/PaddleSeg
into dygraph
上级
0ea6adf9
d3e3f733
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
539 addition
and
155 deletion
+539
-155
dygraph/__init__.py
dygraph/__init__.py
+3
-1
dygraph/configs/ocrnet/ocrnet_hrnetw18_cityscapes_1024x512_40k.yml
...onfigs/ocrnet/ocrnet_hrnetw18_cityscapes_1024x512_40k.yml
+43
-0
dygraph/cvlibs/manager.py
dygraph/cvlibs/manager.py
+14
-8
dygraph/datasets/ade.py
dygraph/datasets/ade.py
+4
-1
dygraph/datasets/cityscapes.py
dygraph/datasets/cityscapes.py
+4
-1
dygraph/datasets/dataset.py
dygraph/datasets/dataset.py
+5
-1
dygraph/datasets/optic_disc_seg.py
dygraph/datasets/optic_disc_seg.py
+4
-1
dygraph/datasets/voc.py
dygraph/datasets/voc.py
+5
-1
dygraph/models/__init__.py
dygraph/models/__init__.py
+1
-0
dygraph/models/ocrnet.py
dygraph/models/ocrnet.py
+196
-0
dygraph/train.py
dygraph/train.py
+19
-92
dygraph/transforms/transforms.py
dygraph/transforms/transforms.py
+15
-0
dygraph/utils/__init__.py
dygraph/utils/__init__.py
+1
-0
dygraph/utils/config.py
dygraph/utils/config.py
+210
-0
dygraph/val.py
dygraph/val.py
+15
-49
未找到文件。
dygraph/__init__.py
浏览文件 @
1a3f44a5
...
...
@@ -12,4 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
dygraph.models
\ No newline at end of file
from
.
import
models
from
.
import
datasets
from
.
import
transforms
dygraph/configs/ocrnet/ocrnet_hrnetw18_cityscapes_1024x512_40k.yml
0 → 100644
浏览文件 @
1a3f44a5
batch_size
:
2
iters
:
40000
train_dataset
:
type
:
Cityscapes
dataset_root
:
datasets/cityscapes
transforms
:
-
type
:
RandomHorizontalFlip
-
type
:
ResizeStepScaling
min_scale_factor
:
0.5
max_scale_factor
:
2.0
scale_step_size
:
0.25
-
type
:
RandomPaddingCrop
crop_size
:
[
1024
,
512
]
-
type
:
Normalize
mode
:
train
val_dataset
:
type
:
Cityscapes
dataset_root
:
datasets/cityscapes
transforms
:
-
type
:
Normalize
mode
:
val
model
:
type
:
ocrnet
backbone
:
type
:
HRNet_W18
pretrained
:
dygraph/pretrained_model/hrnet_w18_ssld/model
num_classes
:
19
in_channels
:
270
optimizer
:
type
:
sgd
learning_rate
:
value
:
0.01
decay
:
type
:
poly
power
:
0.9
loss
:
type
:
CrossEntropy
dygraph/cvlibs/manager.py
浏览文件 @
1a3f44a5
...
...
@@ -44,19 +44,20 @@ class ComponentManager:
def
__init__
(
self
):
self
.
_components_dict
=
dict
()
def
__len__
(
self
):
return
len
(
self
.
_components_dict
)
def
__repr__
(
self
):
return
"{}:{}"
.
format
(
self
.
__class__
.
__name__
,
list
(
self
.
_components_dict
.
keys
()))
return
"{}:{}"
.
format
(
self
.
__class__
.
__name__
,
list
(
self
.
_components_dict
.
keys
()))
def
__getitem__
(
self
,
item
):
if
item
not
in
self
.
_components_dict
.
keys
():
raise
KeyError
(
"{} does not exist in the current {}"
.
format
(
item
,
self
))
raise
KeyError
(
"{} does not exist in the current {}"
.
format
(
item
,
self
))
return
self
.
_components_dict
[
item
]
@
property
def
components_dict
(
self
):
return
self
.
_components_dict
...
...
@@ -74,7 +75,9 @@ class ComponentManager:
# Currently only support class or function type
if
not
(
inspect
.
isclass
(
component
)
or
inspect
.
isfunction
(
component
)):
raise
TypeError
(
"Expect class/function type, but received {}"
.
format
(
type
(
component
)))
raise
TypeError
(
"Expect class/function type, but received {}"
.
format
(
type
(
component
)))
# Obtain the internal name of the component
component_name
=
component
.
__name__
...
...
@@ -92,7 +95,7 @@ class ComponentManager:
Args:
components (function | class | list | tuple): support three types of components
Returns:
None
"""
...
...
@@ -104,8 +107,11 @@ class ComponentManager:
else
:
component
=
components
self
.
_add_single_component
(
component
)
return
components
MODELS
=
ComponentManager
()
BACKBONES
=
ComponentManager
()
\ No newline at end of file
BACKBONES
=
ComponentManager
()
DATASETS
=
ComponentManager
()
TRANSFORMS
=
ComponentManager
()
dygraph/datasets/ade.py
浏览文件 @
1a3f44a5
...
...
@@ -19,11 +19,14 @@ from PIL import Image
from
.dataset
import
Dataset
from
dygraph.utils.download
import
download_file_and_uncompress
from
dygraph.cvlibs
import
manager
from
dygraph.transforms
import
Compose
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset'
)
URL
=
"http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip"
@
manager
.
DATASETS
.
add_component
class
ADE20K
(
Dataset
):
"""ADE20K dataset `http://sceneparsing.csail.mit.edu/`.
Args:
...
...
@@ -39,7 +42,7 @@ class ADE20K(Dataset):
transforms
=
None
,
download
=
True
):
self
.
dataset_root
=
dataset_root
self
.
transforms
=
transforms
self
.
transforms
=
Compose
(
transforms
)
self
.
mode
=
mode
self
.
file_list
=
list
()
self
.
num_classes
=
150
...
...
dygraph/datasets/cityscapes.py
浏览文件 @
1a3f44a5
...
...
@@ -16,8 +16,11 @@ import os
import
glob
from
.dataset
import
Dataset
from
dygraph.cvlibs
import
manager
from
dygraph.transforms
import
Compose
@
manager
.
DATASETS
.
add_component
class
Cityscapes
(
Dataset
):
"""Cityscapes dataset `https://www.cityscapes-dataset.com/`.
The folder structure is as follow:
...
...
@@ -42,7 +45,7 @@ class Cityscapes(Dataset):
def
__init__
(
self
,
dataset_root
,
transforms
=
None
,
mode
=
'train'
):
self
.
dataset_root
=
dataset_root
self
.
transforms
=
transforms
self
.
transforms
=
Compose
(
transforms
)
self
.
file_list
=
list
()
self
.
mode
=
mode
self
.
num_classes
=
19
...
...
dygraph/datasets/dataset.py
浏览文件 @
1a3f44a5
...
...
@@ -17,8 +17,12 @@ import os
import
paddle.fluid
as
fluid
import
numpy
as
np
from
PIL
import
Image
from
dygraph.cvlibs
import
manager
from
dygraph.transforms
import
Compose
@
manager
.
DATASETS
.
add_component
class
Dataset
(
fluid
.
io
.
Dataset
):
"""Pass in a custom dataset that conforms to the format.
...
...
@@ -52,7 +56,7 @@ class Dataset(fluid.io.Dataset):
separator
=
' '
,
transforms
=
None
):
self
.
dataset_root
=
dataset_root
self
.
transforms
=
transforms
self
.
transforms
=
Compose
(
transforms
)
self
.
file_list
=
list
()
self
.
mode
=
mode
self
.
num_classes
=
num_classes
...
...
dygraph/datasets/optic_disc_seg.py
浏览文件 @
1a3f44a5
...
...
@@ -16,11 +16,14 @@ import os
from
.dataset
import
Dataset
from
dygraph.utils.download
import
download_file_and_uncompress
from
dygraph.cvlibs
import
manager
from
dygraph.transforms
import
Compose
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset'
)
URL
=
"https://paddleseg.bj.bcebos.com/dataset/optic_disc_seg.zip"
@
manager
.
DATASETS
.
add_component
class
OpticDiscSeg
(
Dataset
):
def
__init__
(
self
,
dataset_root
=
None
,
...
...
@@ -28,7 +31,7 @@ class OpticDiscSeg(Dataset):
mode
=
'train'
,
download
=
True
):
self
.
dataset_root
=
dataset_root
self
.
transforms
=
transforms
self
.
transforms
=
Compose
(
transforms
)
self
.
file_list
=
list
()
self
.
mode
=
mode
self
.
num_classes
=
2
...
...
dygraph/datasets/voc.py
浏览文件 @
1a3f44a5
...
...
@@ -13,13 +13,17 @@
# limitations under the License.
import
os
from
.dataset
import
Dataset
from
dygraph.utils.download
import
download_file_and_uncompress
from
dygraph.cvlibs
import
manager
from
dygraph.transforms
import
Compose
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset'
)
URL
=
"http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar"
@
manager
.
DATASETS
.
add_component
class
PascalVOC
(
Dataset
):
"""Pascal VOC dataset `http://host.robots.ox.ac.uk/pascal/VOC/`. If you want to augment the dataset,
please run the voc_augment.py in tools.
...
...
@@ -36,7 +40,7 @@ class PascalVOC(Dataset):
transforms
=
None
,
download
=
True
):
self
.
dataset_root
=
dataset_root
self
.
transforms
=
transforms
self
.
transforms
=
Compose
(
transforms
)
self
.
mode
=
mode
self
.
file_list
=
list
()
self
.
num_classes
=
21
...
...
dygraph/models/__init__.py
浏览文件 @
1a3f44a5
...
...
@@ -17,3 +17,4 @@ from .unet import UNet
from
.deeplab
import
*
from
.fcn
import
*
from
.pspnet
import
*
from
.ocrnet
import
*
dygraph/models/ocrnet.py
0 → 100644
浏览文件 @
1a3f44a5
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
Sequential
,
Conv2D
from
dygraph.cvlibs
import
manager
from
dygraph.models.architectures.layer_utils
import
ConvBnRelu
class
SpatialGatherBlock
(
fluid
.
dygraph
.
Layer
):
def
forward
(
self
,
pixels
,
regions
):
n
,
c
,
h
,
w
=
pixels
.
shape
_
,
k
,
_
,
_
=
regions
.
shape
# pixels: from (n, c, h, w) to (n, h*w, c)
pixels
=
fluid
.
layers
.
reshape
(
pixels
,
(
n
,
c
,
h
*
w
))
pixels
=
fluid
.
layers
.
transpose
(
pixels
,
(
0
,
2
,
1
))
# regions: from (n, k, h, w) to (n, k, h*w)
regions
=
fluid
.
layers
.
reshape
(
regions
,
(
n
,
k
,
h
*
w
))
regions
=
fluid
.
layers
.
softmax
(
regions
,
axis
=
2
)
# feats: from (n, k, c) to (n, c, k, 1)
feats
=
fluid
.
layers
.
matmul
(
regions
,
pixels
)
feats
=
fluid
.
layers
.
transpose
(
feats
,
(
0
,
2
,
1
))
feats
=
fluid
.
layers
.
unsqueeze
(
feats
,
axes
=
[
-
1
])
return
feats
class
SpatialOCRModule
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
in_channels
,
key_channels
,
out_channels
,
dropout_rate
=
0.1
):
super
(
SpatialOCRModule
,
self
).
__init__
()
self
.
attention_block
=
ObjectAttentionBlock
(
in_channels
,
key_channels
)
self
.
dropout_rate
=
dropout_rate
self
.
conv1x1
=
Conv2D
(
2
*
in_channels
,
out_channels
,
1
)
def
forward
(
self
,
pixels
,
regions
):
context
=
self
.
attention_block
(
pixels
,
regions
)
feats
=
fluid
.
layers
.
concat
([
context
,
pixels
],
axis
=
1
)
feats
=
self
.
conv1x1
(
feats
)
feats
=
fluid
.
layers
.
dropout
(
feats
,
self
.
dropout_rate
)
return
feats
class
ObjectAttentionBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
in_channels
,
key_channels
):
super
(
ObjectAttentionBlock
,
self
).
__init__
()
self
.
in_channels
=
in_channels
self
.
key_channels
=
key_channels
self
.
f_pixel
=
Sequential
(
ConvBnRelu
(
in_channels
,
key_channels
,
1
),
ConvBnRelu
(
key_channels
,
key_channels
,
1
))
self
.
f_object
=
Sequential
(
ConvBnRelu
(
in_channels
,
key_channels
,
1
),
ConvBnRelu
(
key_channels
,
key_channels
,
1
))
self
.
f_down
=
ConvBnRelu
(
in_channels
,
key_channels
,
1
)
self
.
f_up
=
ConvBnRelu
(
key_channels
,
in_channels
,
1
)
def
forward
(
self
,
x
,
proxy
):
n
,
_
,
h
,
w
=
x
.
shape
# query : from (n, c1, h1, w1) to (n, h1*w1, key_channels)
query
=
self
.
f_pixel
(
x
)
query
=
fluid
.
layers
.
reshape
(
query
,
(
n
,
self
.
key_channels
,
-
1
))
query
=
fluid
.
layers
.
transpose
(
query
,
(
0
,
2
,
1
))
# key : from (n, c2, h2, w2) to (n, key_channels, h2*w2)
key
=
self
.
f_object
(
proxy
)
key
=
fluid
.
layers
.
reshape
(
key
,
(
n
,
self
.
key_channels
,
-
1
))
# value : from (n, c2, h2, w2) to (n, h2*w2, key_channels)
value
=
self
.
f_down
(
proxy
)
value
=
fluid
.
layers
.
reshape
(
value
,
(
n
,
self
.
key_channels
,
-
1
))
value
=
fluid
.
layers
.
transpose
(
value
,
(
0
,
2
,
1
))
# sim_map (n, h1*w1, h2*w2)
sim_map
=
fluid
.
layers
.
matmul
(
query
,
key
)
sim_map
=
(
self
.
key_channels
**-
.
5
)
*
sim_map
sim_map
=
fluid
.
layers
.
softmax
(
sim_map
,
axis
=-
1
)
# context from (n, h1*w1, key_channels) to (n , out_channels, h1, w1)
context
=
fluid
.
layers
.
matmul
(
sim_map
,
value
)
context
=
fluid
.
layers
.
transpose
(
context
,
(
0
,
2
,
1
))
context
=
fluid
.
layers
.
reshape
(
context
,
(
n
,
self
.
key_channels
,
h
,
w
))
context
=
self
.
f_up
(
context
)
return
context
@
manager
.
MODELS
.
add_component
class
OCRNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_classes
,
in_channels
,
backbone
,
ocr_mid_channels
=
512
,
ocr_key_channels
=
256
,
ignore_index
=
255
):
super
(
OCRNet
,
self
).
__init__
()
self
.
ignore_index
=
ignore_index
self
.
num_classes
=
num_classes
self
.
EPS
=
1e-5
self
.
backbone
=
backbone
self
.
spatial_gather
=
SpatialGatherBlock
()
self
.
spatial_ocr
=
SpatialOCRModule
(
ocr_mid_channels
,
ocr_key_channels
,
ocr_mid_channels
)
self
.
conv3x3_ocr
=
ConvBnRelu
(
in_channels
,
ocr_mid_channels
,
3
,
padding
=
1
)
self
.
cls_head
=
Conv2D
(
ocr_mid_channels
,
self
.
num_classes
,
1
)
self
.
aux_head
=
Sequential
(
ConvBnRelu
(
in_channels
,
in_channels
,
3
,
padding
=
1
),
Conv2D
(
in_channels
,
self
.
num_classes
,
1
))
def
forward
(
self
,
x
,
label
=
None
):
feats
=
self
.
backbone
(
x
)
soft_regions
=
self
.
aux_head
(
feats
)
pixels
=
self
.
conv3x3_ocr
(
feats
)
object_regions
=
self
.
spatial_gather
(
pixels
,
soft_regions
)
ocr
=
self
.
spatial_ocr
(
pixels
,
object_regions
)
logit
=
self
.
cls_head
(
ocr
)
logit
=
fluid
.
layers
.
resize_bilinear
(
logit
,
x
.
shape
[
2
:])
if
self
.
training
:
soft_regions
=
fluid
.
layers
.
resize_bilinear
(
soft_regions
,
x
.
shape
[
2
:])
cls_loss
=
self
.
_get_loss
(
logit
,
label
)
aux_loss
=
self
.
_get_loss
(
soft_regions
,
label
)
return
cls_loss
+
0.4
*
aux_loss
score_map
=
fluid
.
layers
.
softmax
(
logit
,
axis
=
1
)
score_map
=
fluid
.
layers
.
transpose
(
score_map
,
[
0
,
2
,
3
,
1
])
pred
=
fluid
.
layers
.
argmax
(
score_map
,
axis
=
3
)
pred
=
fluid
.
layers
.
unsqueeze
(
pred
,
axes
=
[
3
])
return
pred
,
score_map
def
_get_loss
(
self
,
logit
,
label
):
"""
compute forward loss of the model
Args:
logit (tensor): the logit of model output
label (tensor): ground truth
Returns:
avg_loss (tensor): forward loss
"""
logit
=
fluid
.
layers
.
transpose
(
logit
,
[
0
,
2
,
3
,
1
])
label
=
fluid
.
layers
.
transpose
(
label
,
[
0
,
2
,
3
,
1
])
mask
=
label
!=
self
.
ignore_index
mask
=
fluid
.
layers
.
cast
(
mask
,
'float32'
)
loss
,
probs
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logit
,
label
,
ignore_index
=
self
.
ignore_index
,
return_softmax
=
True
,
axis
=-
1
)
loss
=
loss
*
mask
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
/
(
fluid
.
layers
.
mean
(
mask
)
+
self
.
EPS
)
label
.
stop_gradient
=
True
mask
.
stop_gradient
=
True
return
avg_loss
dygraph/train.py
浏览文件 @
1a3f44a5
...
...
@@ -17,78 +17,36 @@ import argparse
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
dygraph.datasets
import
DATASETS
import
dygraph.transforms
as
T
import
dygraph
from
dygraph.cvlibs
import
manager
from
dygraph.utils
import
get_environ_info
from
dygraph.utils
import
logger
from
dygraph.utils
import
Config
from
dygraph.core
import
train
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'Model training'
)
# params of model
parser
.
add_argument
(
'--model_name'
,
dest
=
'model_name'
,
help
=
'Model type for training, which is one of {}'
.
format
(
str
(
list
(
manager
.
MODELS
.
components_dict
.
keys
()))),
type
=
str
,
default
=
'UNet'
)
# params of dataset
parser
.
add_argument
(
'--dataset'
,
dest
=
'dataset'
,
help
=
"The dataset you want to train, which is one of {}"
.
format
(
str
(
list
(
DATASETS
.
keys
()))),
type
=
str
,
default
=
'OpticDiscSeg'
)
parser
.
add_argument
(
'--dataset_root'
,
dest
=
'dataset_root'
,
help
=
"dataset root directory"
,
type
=
str
,
default
=
None
)
# params of training
parser
.
add_argument
(
"--input_size"
,
dest
=
"input_size"
,
help
=
"The image size for net inputs."
,
nargs
=
2
,
default
=
[
512
,
512
],
type
=
int
)
"--config"
,
dest
=
"cfg"
,
help
=
"The config file."
,
default
=
None
,
type
=
str
)
parser
.
add_argument
(
'--iters'
,
dest
=
'iters'
,
help
=
'iters for training'
,
type
=
int
,
default
=
10000
)
default
=
None
)
parser
.
add_argument
(
'--batch_size'
,
dest
=
'batch_size'
,
help
=
'Mini batch size of one gpu or cpu'
,
type
=
int
,
default
=
2
)
default
=
None
)
parser
.
add_argument
(
'--learning_rate'
,
dest
=
'learning_rate'
,
help
=
'Learning rate'
,
type
=
float
,
default
=
0.01
)
parser
.
add_argument
(
'--pretrained_model'
,
dest
=
'pretrained_model'
,
help
=
'The path of pretrained model'
,
type
=
str
,
default
=
None
)
parser
.
add_argument
(
'--resume_model'
,
dest
=
'resume_model'
,
help
=
'The path of resume model'
,
type
=
str
,
default
=
None
)
parser
.
add_argument
(
'--save_interval_iters'
,
...
...
@@ -139,59 +97,28 @@ def main(args):
if
env_info
[
'Paddle compiled with cuda'
]
and
env_info
[
'GPUs used'
]
\
else
fluid
.
CPUPlace
()
if
args
.
dataset
not
in
DATASETS
:
raise
Exception
(
'`--dataset` is invalid. it should be one of {}'
.
format
(
str
(
list
(
DATASETS
.
keys
()))))
dataset
=
DATASETS
[
args
.
dataset
]
with
fluid
.
dygraph
.
guard
(
places
):
# Creat dataset reader
train_transforms
=
T
.
Compose
([
T
.
Resize
(
args
.
input_size
),
T
.
RandomHorizontalFlip
(),
T
.
Normalize
()
])
train_dataset
=
dataset
(
dataset_root
=
args
.
dataset_root
,
transforms
=
train_transforms
,
mode
=
'train'
)
if
not
args
.
cfg
:
raise
RuntimeError
(
'No configuration file specified.'
)
eval_dataset
=
None
if
args
.
do_eval
:
eval_transforms
=
T
.
Compose
(
[
T
.
Resize
(
args
.
input_size
),
T
.
Normalize
()])
eval_dataset
=
dataset
(
dataset_root
=
args
.
dataset_root
,
transforms
=
eval_transforms
,
mode
=
'val'
)
model
=
manager
.
MODELS
[
args
.
model_name
](
num_classes
=
train_dataset
.
num_classes
,
pretrained_model
=
args
.
pretrained_model
)
cfg
=
Config
(
args
.
cfg
)
train_dataset
=
cfg
.
train_dataset
if
not
train_dataset
:
raise
RuntimeError
(
'The training dataset is not specified in the configuration file.'
)
# Creat optimizer
# todo, may less one than len(loader)
num_iters_each_epoch
=
len
(
train_dataset
)
//
(
args
.
batch_size
*
ParallelEnv
().
nranks
)
lr_decay
=
fluid
.
layers
.
polynomial_decay
(
args
.
learning_rate
,
args
.
iters
,
end_learning_rate
=
0
,
power
=
0.9
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
lr_decay
,
momentum
=
0.9
,
parameter_list
=
model
.
parameters
(),
regularization
=
fluid
.
regularizer
.
L2Decay
(
regularization_coeff
=
4e-5
))
val_dataset
=
cfg
.
val_dataset
if
args
.
do_eval
else
None
train
(
model
,
cfg
.
model
,
train_dataset
,
places
=
places
,
eval_dataset
=
e
val_dataset
,
optimizer
=
optimizer
,
eval_dataset
=
val_dataset
,
optimizer
=
cfg
.
optimizer
,
save_dir
=
args
.
save_dir
,
iters
=
args
.
iters
,
batch_size
=
args
.
batch_size
,
resume_model
=
args
.
resume_model
,
iters
=
cfg
.
iters
,
batch_size
=
cfg
.
batch_size
,
save_interval_iters
=
args
.
save_interval_iters
,
log_iters
=
args
.
log_iters
,
num_classes
=
train_dataset
.
num_classes
,
...
...
dygraph/transforms/transforms.py
浏览文件 @
1a3f44a5
...
...
@@ -21,8 +21,10 @@ from PIL import Image
import
cv2
from
.functional
import
*
from
dygraph.cvlibs
import
manager
@
manager
.
TRANSFORMS
.
add_component
class
Compose
:
def
__init__
(
self
,
transforms
,
to_rgb
=
True
):
if
not
isinstance
(
transforms
,
list
):
...
...
@@ -58,6 +60,7 @@ class Compose:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
RandomHorizontalFlip
:
def
__init__
(
self
,
prob
=
0.5
):
self
.
prob
=
prob
...
...
@@ -73,6 +76,7 @@ class RandomHorizontalFlip:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
RandomVerticalFlip
:
def
__init__
(
self
,
prob
=
0.1
):
self
.
prob
=
prob
...
...
@@ -88,6 +92,7 @@ class RandomVerticalFlip:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
Resize
:
# The interpolation mode
interp_dict
=
{
...
...
@@ -137,6 +142,7 @@ class Resize:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
ResizeByLong
:
def
__init__
(
self
,
long_size
):
self
.
long_size
=
long_size
...
...
@@ -156,6 +162,7 @@ class ResizeByLong:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
ResizeRangeScaling
:
def
__init__
(
self
,
min_value
=
400
,
max_value
=
600
):
if
min_value
>
max_value
:
...
...
@@ -181,6 +188,7 @@ class ResizeRangeScaling:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
ResizeStepScaling
:
def
__init__
(
self
,
min_scale_factor
=
0.75
,
...
...
@@ -224,6 +232,7 @@ class ResizeStepScaling:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
Normalize
:
def
__init__
(
self
,
mean
=
[
0.5
,
0.5
,
0.5
],
std
=
[
0.5
,
0.5
,
0.5
]):
self
.
mean
=
mean
...
...
@@ -245,6 +254,7 @@ class Normalize:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
Padding
:
def
__init__
(
self
,
target_size
,
...
...
@@ -305,6 +315,7 @@ class Padding:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
RandomPaddingCrop
:
def
__init__
(
self
,
crop_size
=
512
,
...
...
@@ -378,6 +389,7 @@ class RandomPaddingCrop:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
RandomBlur
:
def
__init__
(
self
,
prob
=
0.1
):
self
.
prob
=
prob
...
...
@@ -404,6 +416,7 @@ class RandomBlur:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
RandomRotation
:
def
__init__
(
self
,
max_rotation
=
15
,
...
...
@@ -451,6 +464,7 @@ class RandomRotation:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
RandomScaleAspect
:
def
__init__
(
self
,
min_scale
=
0.5
,
aspect_ratio
=
0.33
):
self
.
min_scale
=
min_scale
...
...
@@ -492,6 +506,7 @@ class RandomScaleAspect:
return
(
im
,
im_info
,
label
)
@
manager
.
TRANSFORMS
.
add_component
class
RandomDistort
:
def
__init__
(
self
,
brightness_range
=
0.5
,
...
...
dygraph/utils/__init__.py
浏览文件 @
1a3f44a5
...
...
@@ -18,3 +18,4 @@ from .metrics import ConfusionMatrix
from
.utils
import
*
from
.timer
import
Timer
,
calculate_eta
from
.get_environ_info
import
get_environ_info
from
.config
import
Config
dygraph/utils/config.py
0 → 100644
浏览文件 @
1a3f44a5
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
codecs
import
os
from
typing
import
Any
,
Callable
import
yaml
import
paddle.fluid
as
fluid
import
dygraph.cvlibs.manager
as
manager
class
Config
(
object
):
'''
Training config.
Args:
path(str) : the path of config file, supports yaml format only
'''
def
__init__
(
self
,
path
:
str
):
if
not
os
.
path
.
exists
(
path
):
raise
FileNotFoundError
(
'File {} does not exist'
.
format
(
path
))
if
path
.
endswith
(
'yml'
)
or
path
.
endswith
(
'yaml'
):
self
.
_parse_from_yaml
(
path
)
else
:
raise
RuntimeError
(
'Config file should in yaml format!'
)
def
_parse_from_yaml
(
self
,
path
:
str
):
'''Parse a yaml file and build config'''
with
codecs
.
open
(
path
,
'r'
,
'utf-8'
)
as
file
:
dic
=
yaml
.
load
(
file
,
Loader
=
yaml
.
FullLoader
)
self
.
_build
(
dic
)
def
_build
(
self
,
dic
:
dict
):
'''Build config from dictionary'''
dic
=
dic
.
copy
()
self
.
_batch_size
=
dic
.
get
(
'batch_size'
,
1
)
self
.
_iters
=
dic
.
get
(
'iters'
)
if
'model'
not
in
dic
:
raise
RuntimeError
()
self
.
_model_cfg
=
dic
[
'model'
]
self
.
_model
=
None
self
.
_train_dataset
=
dic
.
get
(
'train_dataset'
)
self
.
_val_dataset
=
dic
.
get
(
'val_dataset'
)
self
.
_learning_rate_cfg
=
dic
.
get
(
'learning_rate'
,
{})
self
.
_learning_rate
=
self
.
_learning_rate_cfg
.
get
(
'value'
)
self
.
_decay
=
self
.
_learning_rate_cfg
.
get
(
'decay'
,
{
'type'
:
'poly'
,
'power'
:
0.9
})
self
.
_loss_cfg
=
dic
.
get
(
'loss'
,
{})
self
.
_optimizer_cfg
=
dic
.
get
(
'optimizer'
,
{})
def
update
(
self
,
learning_rate
:
float
=
None
,
batch_size
:
int
=
None
,
iters
:
int
=
None
):
'''Update config'''
if
learning_rate
:
self
.
_learning_rate
=
learning_rate
if
batch_size
:
self
.
_batch_size
=
batch_size
if
iters
:
self
.
_iters
=
iters
@
property
def
batch_size
(
self
)
->
int
:
return
self
.
_batch_size
@
property
def
iters
(
self
)
->
int
:
if
not
self
.
_iters
:
raise
RuntimeError
(
'No iters specified in the configuration file.'
)
return
self
.
_iters
@
property
def
learning_rate
(
self
)
->
float
:
if
not
self
.
_learning_rate
:
raise
RuntimeError
(
'No learning rate specified in the configuration file.'
)
if
self
.
decay_type
==
'poly'
:
lr
=
self
.
_learning_rate
args
=
self
.
decay_args
args
.
setdefault
(
'decay_steps'
,
self
.
iters
)
return
fluid
.
layers
.
polynomial_decay
(
lr
,
**
args
)
else
:
raise
RuntimeError
(
'Only poly decay support.'
)
@
property
def
optimizer
(
self
)
->
fluid
.
optimizer
.
Optimizer
:
if
self
.
optimizer_type
==
'sgd'
:
lr
=
self
.
learning_rate
args
=
self
.
optimizer_args
args
.
setdefault
(
'momentum'
,
0.9
)
return
fluid
.
optimizer
.
Momentum
(
lr
,
parameter_list
=
self
.
model
.
parameters
(),
**
args
)
else
:
raise
RuntimeError
(
'Only sgd optimizer support.'
)
@
property
def
optimizer_type
(
self
)
->
str
:
otype
=
self
.
_optimizer_cfg
.
get
(
'type'
)
if
not
otype
:
raise
RuntimeError
(
'No optimizer type specified in the configuration file.'
)
return
otype
@
property
def
optimizer_args
(
self
)
->
dict
:
args
=
self
.
_optimizer_cfg
.
copy
()
args
.
pop
(
'type'
)
return
args
@
property
def
decay_type
(
self
)
->
str
:
return
self
.
_decay
[
'type'
]
@
property
def
decay_args
(
self
)
->
dict
:
args
=
self
.
_decay
.
copy
()
args
.
pop
(
'type'
)
return
args
@
property
def
loss_type
(
self
)
->
str
:
...
@
property
def
loss_args
(
self
)
->
dict
:
args
=
self
.
_loss_cfg
.
copy
()
args
.
pop
(
'type'
)
return
args
@
property
def
model
(
self
)
->
Callable
:
if
not
self
.
_model
:
self
.
_model
=
self
.
_load_object
(
self
.
_model_cfg
)
return
self
.
_model
@
property
def
train_dataset
(
self
)
->
Any
:
if
not
self
.
_train_dataset
:
return
None
return
self
.
_load_object
(
self
.
_train_dataset
)
@
property
def
val_dataset
(
self
)
->
Any
:
if
not
self
.
_val_dataset
:
return
None
return
self
.
_load_object
(
self
.
_val_dataset
)
def
_load_component
(
self
,
com_name
:
str
)
->
Any
:
com_list
=
[
manager
.
MODELS
,
manager
.
BACKBONES
,
manager
.
DATASETS
,
manager
.
TRANSFORMS
]
for
com
in
com_list
:
if
com_name
in
com
.
components_dict
:
return
com
[
com_name
]
else
:
raise
RuntimeError
(
'The specified component was not found {}.'
.
format
(
com_name
))
def
_load_object
(
self
,
cfg
:
dict
)
->
Any
:
cfg
=
cfg
.
copy
()
if
'type'
not
in
cfg
:
raise
RuntimeError
(
'No object information in {}.'
.
format
(
cfg
))
component
=
self
.
_load_component
(
cfg
.
pop
(
'type'
))
params
=
{}
for
key
,
val
in
cfg
.
items
():
if
self
.
_is_meta_type
(
val
):
params
[
key
]
=
self
.
_load_object
(
val
)
elif
isinstance
(
val
,
list
):
params
[
key
]
=
[
self
.
_load_object
(
item
)
if
self
.
_is_meta_type
(
item
)
else
item
for
item
in
val
]
else
:
params
[
key
]
=
val
return
component
(
**
params
)
def
_is_meta_type
(
self
,
item
:
Any
)
->
bool
:
return
isinstance
(
item
,
dict
)
and
'type'
in
item
dygraph/val.py
浏览文件 @
1a3f44a5
...
...
@@ -17,48 +17,19 @@ import argparse
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
dygraph.datasets
import
DATASETS
import
dygraph.transforms
as
T
import
dygraph
from
dygraph.cvlibs
import
manager
from
dygraph.utils
import
get_environ_info
from
dygraph.utils
import
Config
from
dygraph.core
import
evaluate
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'Model evaluation'
)
# params of model
parser
.
add_argument
(
'--model_name'
,
dest
=
'model_name'
,
help
=
'Model type for evaluation, which is one of {}'
.
format
(
str
(
list
(
manager
.
MODELS
.
components_dict
.
keys
()))),
type
=
str
,
default
=
'UNet'
)
# params of dataset
parser
.
add_argument
(
'--dataset'
,
dest
=
'dataset'
,
help
=
"The dataset you want to evaluation, which is one of {}"
.
format
(
str
(
list
(
DATASETS
.
keys
()))),
type
=
str
,
default
=
'OpticDiscSeg'
)
parser
.
add_argument
(
'--dataset_root'
,
dest
=
'dataset_root'
,
help
=
"dataset root directory"
,
type
=
str
,
default
=
None
)
# params of evaluate
parser
.
add_argument
(
"--input_size"
,
dest
=
"input_size"
,
help
=
"The image size for net inputs."
,
nargs
=
2
,
default
=
[
512
,
512
],
type
=
int
)
"--config"
,
dest
=
"cfg"
,
help
=
"The config file."
,
default
=
None
,
type
=
str
)
parser
.
add_argument
(
'--model_dir'
,
dest
=
'model_dir'
,
...
...
@@ -75,26 +46,21 @@ def main(args):
if
env_info
[
'Paddle compiled with cuda'
]
and
env_info
[
'GPUs used'
]
\
else
fluid
.
CPUPlace
()
if
args
.
dataset
not
in
DATASETS
:
raise
Exception
(
'`--dataset` is invalid. it should be one of {}'
.
format
(
str
(
list
(
DATASETS
.
keys
()))))
dataset
=
DATASETS
[
args
.
dataset
]
with
fluid
.
dygraph
.
guard
(
places
):
eval_transforms
=
T
.
Compose
([
T
.
Resize
(
args
.
input_size
),
T
.
Normalize
()])
eval_dataset
=
dataset
(
dataset_root
=
args
.
dataset_root
,
transforms
=
eval_transforms
,
mode
=
'val'
)
model
=
manager
.
MODELS
[
args
.
model_name
]
(
num_classes
=
eval_dataset
.
num_classes
)
if
not
args
.
cfg
:
raise
RuntimeError
(
'No configuration file specified.'
)
cfg
=
Config
(
args
.
cfg
)
val_dataset
=
cfg
.
val_dataset
if
not
val_dataset
:
raise
RuntimeError
(
'The verification dataset is not specified in the configuration file.'
)
evaluate
(
model
,
e
val_dataset
,
cfg
.
model
,
val_dataset
,
model_dir
=
args
.
model_dir
,
num_classes
=
e
val_dataset
.
num_classes
)
num_classes
=
val_dataset
.
num_classes
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录