提交 cb3743d0 编写于 作者: C chenguowei01

update model_builder.py

上级 216f38e7
...@@ -124,6 +124,58 @@ def sigmoid_to_softmax(logit): ...@@ -124,6 +124,58 @@ def sigmoid_to_softmax(logit):
logit = fluid.layers.transpose(logit, [0, 3, 1, 2]) logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
return logit return logit
def export_preprocess(image):
"""导出模型的预处理流程"""
width = cfg.EVAL_CROP_SIZE[0]
height = cfg.EVAL_CROP_SIZE[1]
image = fluid.layers.transpose(image, [0, 3, 1, 2])
origin_shape = fluid.layers.shape(image)[-2:]
# 不同AUG_METHOD方法的resize
if cfg.AUG.AUG_METHOD == 'unpadding':
h = cfg.AUG.FIX_RESIZE_SIZE[1]
w = cfg.AUG.FIX_RESIZE_SIZE[0]
image = fluid.layers.resize_bilinear(
image,
out_shape=[h, w],
align_corners=False,
align_mode=0)
if cfg.AUG.AUG_METHOD == 'stepscaling':
pass
if cfg.AUG.AUG_METHOD == 'rangescaling':
size = cfg.AUG.INF_RESIZE_VALUE
value = fluid.layers.reduce_max(origin_shape)
scale = float(size) / value.astype('float32')
image = fluid.layers.resize_bilinear(
image, scale=scale, align_corners=False, align_mode=0)
# 存储resize后图像shape
valid_shape = fluid.layers.shape(image)[-2:]
# padding 到eval_crop_size大小
pad_target = fluid.layers.assign(
np.array([height, width]).astype('float32'))
up = fluid.layers.assign(np.array([0]).astype('float32'))
down = pad_target[0] - valid_shape[0]
left = up
right = pad_target[1] - valid_shape[1]
paddings = fluid.layers.concat([up, down, left, right])
paddings = fluid.layers.cast(paddings, 'int32')
image = fluid.layers.pad2d(
image, paddings=paddings, pad_value=127.5)
# normalize
mean = np.array(cfg.MEAN).reshape(1, len(cfg.MEAN), 1, 1)
mean = fluid.layers.assign(mean.astype('float32'))
std = np.array(cfg.STD).reshape(1, len(cfg.STD), 1, 1)
std = fluid.layers.assign(std.astype('float32'))
image = (image / 255 - mean) / std
# 很有必要,使后面的网络能通过image.shape获取特征图的shape
image = fluid.layers.reshape(
image, shape=[-1, cfg.DATASET.DATA_DIM, height, width])
return image, valid_shape, origin_shape
def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN): def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
if not ModelPhase.is_valid_phase(phase): if not ModelPhase.is_valid_phase(phase):
...@@ -149,51 +201,7 @@ def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN): ...@@ -149,51 +201,7 @@ def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
shape=[-1, -1, -1, cfg.DATASET.DATA_DIM], shape=[-1, -1, -1, cfg.DATASET.DATA_DIM],
dtype='float32', dtype='float32',
append_batch_size=False) append_batch_size=False)
image = fluid.layers.transpose(origin_image, [0, 3, 1, 2]) image, valid_shape, origin_shape = export_preprocess(origin_image)
origin_shape = fluid.layers.shape(image)[-2:]
# 不同AUG_METHOD方法的resize
if cfg.AUG.AUG_METHOD == 'unpadding':
h = cfg.AUG.FIX_RESIZE_SIZE[1]
w = cfg.AUG.FIX_RESIZE_SIZE[0]
image = fluid.layers.resize_bilinear(
image,
out_shape=[h, w],
align_corners=False,
align_mode=0)
if cfg.AUG.AUG_METHOD == 'stepscaling':
pass
if cfg.AUG.AUG_METHOD == 'rangescaling':
size = cfg.AUG.INF_RESIZE_VALUE
value = fluid.layers.reduce_max(origin_shape)
scale = float(size) / value.astype('float32')
image = fluid.layers.resize_bilinear(
image, scale=scale, align_corners=False, align_mode=0)
# 存储resize后图像shape
valid_shape = fluid.layers.shape(image)[-2:]
# padding 到eval_crop_size大小
pad_target = fluid.layers.assign(
np.array([height, width]).astype('float32'))
up = fluid.layers.assign(np.array([0]).astype('float32'))
down = pad_target[0] - valid_shape[0]
left = up
right = pad_target[1] - valid_shape[1]
paddings = fluid.layers.concat([up, down, left, right])
paddings = fluid.layers.cast(paddings, 'int32')
image = fluid.layers.pad2d(
image, paddings=paddings, pad_value=127.5)
#normalize
mean = np.array(cfg.MEAN).reshape(1, len(cfg.MEAN), 1, 1)
mean = fluid.layers.assign(mean.astype('float32'))
std = np.array(cfg.STD).reshape(1, len(cfg.STD), 1, 1)
std = fluid.layers.assign(std.astype('float32'))
image = (image / 255 - mean) / std
# 很有必要,使后面的网络能通过image.shape获取特征图的shape
image = fluid.layers.reshape(
image, shape=[-1, cfg.DATASET.DATA_DIM, height, width])
else: else:
image = fluid.layers.data( image = fluid.layers.data(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册