Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
cb3743d0
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cb3743d0
编写于
12月 12, 2019
作者:
C
chenguowei01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update model_builder.py
上级
216f38e7
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
53 addition
and
45 deletion
+53
-45
pdseg/models/model_builder.py
pdseg/models/model_builder.py
+53
-45
未找到文件。
pdseg/models/model_builder.py
浏览文件 @
cb3743d0
...
...
@@ -124,6 +124,58 @@ def sigmoid_to_softmax(logit):
logit
=
fluid
.
layers
.
transpose
(
logit
,
[
0
,
3
,
1
,
2
])
return
logit
def
export_preprocess
(
image
):
"""导出模型的预处理流程"""
width
=
cfg
.
EVAL_CROP_SIZE
[
0
]
height
=
cfg
.
EVAL_CROP_SIZE
[
1
]
image
=
fluid
.
layers
.
transpose
(
image
,
[
0
,
3
,
1
,
2
])
origin_shape
=
fluid
.
layers
.
shape
(
image
)[
-
2
:]
# 不同AUG_METHOD方法的resize
if
cfg
.
AUG
.
AUG_METHOD
==
'unpadding'
:
h
=
cfg
.
AUG
.
FIX_RESIZE_SIZE
[
1
]
w
=
cfg
.
AUG
.
FIX_RESIZE_SIZE
[
0
]
image
=
fluid
.
layers
.
resize_bilinear
(
image
,
out_shape
=
[
h
,
w
],
align_corners
=
False
,
align_mode
=
0
)
if
cfg
.
AUG
.
AUG_METHOD
==
'stepscaling'
:
pass
if
cfg
.
AUG
.
AUG_METHOD
==
'rangescaling'
:
size
=
cfg
.
AUG
.
INF_RESIZE_VALUE
value
=
fluid
.
layers
.
reduce_max
(
origin_shape
)
scale
=
float
(
size
)
/
value
.
astype
(
'float32'
)
image
=
fluid
.
layers
.
resize_bilinear
(
image
,
scale
=
scale
,
align_corners
=
False
,
align_mode
=
0
)
# 存储resize后图像shape
valid_shape
=
fluid
.
layers
.
shape
(
image
)[
-
2
:]
# padding 到eval_crop_size大小
pad_target
=
fluid
.
layers
.
assign
(
np
.
array
([
height
,
width
]).
astype
(
'float32'
))
up
=
fluid
.
layers
.
assign
(
np
.
array
([
0
]).
astype
(
'float32'
))
down
=
pad_target
[
0
]
-
valid_shape
[
0
]
left
=
up
right
=
pad_target
[
1
]
-
valid_shape
[
1
]
paddings
=
fluid
.
layers
.
concat
([
up
,
down
,
left
,
right
])
paddings
=
fluid
.
layers
.
cast
(
paddings
,
'int32'
)
image
=
fluid
.
layers
.
pad2d
(
image
,
paddings
=
paddings
,
pad_value
=
127.5
)
# normalize
mean
=
np
.
array
(
cfg
.
MEAN
).
reshape
(
1
,
len
(
cfg
.
MEAN
),
1
,
1
)
mean
=
fluid
.
layers
.
assign
(
mean
.
astype
(
'float32'
))
std
=
np
.
array
(
cfg
.
STD
).
reshape
(
1
,
len
(
cfg
.
STD
),
1
,
1
)
std
=
fluid
.
layers
.
assign
(
std
.
astype
(
'float32'
))
image
=
(
image
/
255
-
mean
)
/
std
# 很有必要,使后面的网络能通过image.shape获取特征图的shape
image
=
fluid
.
layers
.
reshape
(
image
,
shape
=
[
-
1
,
cfg
.
DATASET
.
DATA_DIM
,
height
,
width
])
return
image
,
valid_shape
,
origin_shape
def
build_model
(
main_prog
,
start_prog
,
phase
=
ModelPhase
.
TRAIN
):
if
not
ModelPhase
.
is_valid_phase
(
phase
):
...
...
@@ -149,51 +201,7 @@ def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
shape
=
[
-
1
,
-
1
,
-
1
,
cfg
.
DATASET
.
DATA_DIM
],
dtype
=
'float32'
,
append_batch_size
=
False
)
image
=
fluid
.
layers
.
transpose
(
origin_image
,
[
0
,
3
,
1
,
2
])
origin_shape
=
fluid
.
layers
.
shape
(
image
)[
-
2
:]
# 不同AUG_METHOD方法的resize
if
cfg
.
AUG
.
AUG_METHOD
==
'unpadding'
:
h
=
cfg
.
AUG
.
FIX_RESIZE_SIZE
[
1
]
w
=
cfg
.
AUG
.
FIX_RESIZE_SIZE
[
0
]
image
=
fluid
.
layers
.
resize_bilinear
(
image
,
out_shape
=
[
h
,
w
],
align_corners
=
False
,
align_mode
=
0
)
if
cfg
.
AUG
.
AUG_METHOD
==
'stepscaling'
:
pass
if
cfg
.
AUG
.
AUG_METHOD
==
'rangescaling'
:
size
=
cfg
.
AUG
.
INF_RESIZE_VALUE
value
=
fluid
.
layers
.
reduce_max
(
origin_shape
)
scale
=
float
(
size
)
/
value
.
astype
(
'float32'
)
image
=
fluid
.
layers
.
resize_bilinear
(
image
,
scale
=
scale
,
align_corners
=
False
,
align_mode
=
0
)
# 存储resize后图像shape
valid_shape
=
fluid
.
layers
.
shape
(
image
)[
-
2
:]
# padding 到eval_crop_size大小
pad_target
=
fluid
.
layers
.
assign
(
np
.
array
([
height
,
width
]).
astype
(
'float32'
))
up
=
fluid
.
layers
.
assign
(
np
.
array
([
0
]).
astype
(
'float32'
))
down
=
pad_target
[
0
]
-
valid_shape
[
0
]
left
=
up
right
=
pad_target
[
1
]
-
valid_shape
[
1
]
paddings
=
fluid
.
layers
.
concat
([
up
,
down
,
left
,
right
])
paddings
=
fluid
.
layers
.
cast
(
paddings
,
'int32'
)
image
=
fluid
.
layers
.
pad2d
(
image
,
paddings
=
paddings
,
pad_value
=
127.5
)
#normalize
mean
=
np
.
array
(
cfg
.
MEAN
).
reshape
(
1
,
len
(
cfg
.
MEAN
),
1
,
1
)
mean
=
fluid
.
layers
.
assign
(
mean
.
astype
(
'float32'
))
std
=
np
.
array
(
cfg
.
STD
).
reshape
(
1
,
len
(
cfg
.
STD
),
1
,
1
)
std
=
fluid
.
layers
.
assign
(
std
.
astype
(
'float32'
))
image
=
(
image
/
255
-
mean
)
/
std
# 很有必要,使后面的网络能通过image.shape获取特征图的shape
image
=
fluid
.
layers
.
reshape
(
image
,
shape
=
[
-
1
,
cfg
.
DATASET
.
DATA_DIM
,
height
,
width
])
image
,
valid_shape
,
origin_shape
=
export_preprocess
(
origin_image
)
else
:
image
=
fluid
.
layers
.
data
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录