提交 c4698b62 编写于 作者: C chulutao

conflict fixed

language: python
python:
- '2.7'
- '3.5'
- '3.6'
script:
- /bin/bash ./test/ci/test_download_dataset.sh
notifications:
email:
on_success: change
on_failure: always
# PaddleSeg 语义分割库
[![Build Status](https://travis-ci.org/PaddlePaddle/PaddleSeg.svg?branch=master)](https://travis-ci.org/PaddlePaddle/PaddleSeg)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
## 简介
PaddleSeg是基于[PaddlePaddle](https://www.paddlepaddle.org.cn)开发的语义分割库,覆盖了DeepLabv3+, U-Net, ICNet三类主流的分割模型。通过统一的配置,帮助用户更便捷地完成从训练到部署的全流程图像分割应用。
具备高性能、丰富的数据增强、工业级部署、全流程应用的特点。
PaddleSeg具备高性能、丰富的数据增强、工业级部署、全流程应用的特点:
- **丰富的数据增强**
- 基于百度视觉技术部的实际业务经验,内置10+种数据增强策略,可结合实际业务场景进行定制组合,提升模型泛化能力和鲁棒性。
基于百度视觉技术部的实际业务经验,内置10+种数据增强策略,可结合实际业务场景进行定制组合,提升模型泛化能力和鲁棒性。
- **主流模型覆盖**
- 支持U-Net, DeepLabv3+, ICNet三类主流分割网络,结合预训练模型和可调节的骨干网络,满足不同性能和精度的要求。
支持U-Net, DeepLabv3+, ICNet三类主流分割网络,结合预训练模型和可调节的骨干网络,满足不同性能和精度的要求。
- **高性能**
- PaddleSeg支持多进程IO、多卡并行、多卡Batch Norm同步等训练加速策略,通过飞桨核心框架的显存优化算法,可以大幅度节约分割模型的显存开销,更快完成分割模型训练。
- **工业级部署**
PaddleSeg支持多进程IO、多卡并行、跨卡Batch Norm同步等训练加速策略,结合飞桨核心框架的显存优化功能,可以大幅度减少分割模型的显存开销,更快完成分割模型训练。
- 基于[Paddle Serving](https://github.com/PaddlePaddle/Serving)和PaddlePaddle高性能预测引擎,结合百度开放的AI能力,轻松搭建人像分割和车道线分割服务。
- **工业级部署**
基于[Paddle Serving](https://github.com/PaddlePaddle/Serving)和PaddlePaddle高性能预测引擎,结合百度开放的AI能力,轻松搭建人像分割和车道线分割服务。
更多模型信息与技术细节请查看[模型介绍](./docs/models.md)[预训练模型](./docs/model_zoo.md)
</br>
## AI Studio教程
## 使用教程
### 快速开始
我们提供了一系列的使用教程,来说明如何使用PaddleSeg完成一个语义分割模型的训练、评估、部署。
通过 [PaddleSeg人像分割](https://aistudio.baidu.com/aistudio/projectDetail/100798) 教程可快速体验PaddleSeg人像分割模型的效果
这一系列的文档被分为`快速入门``基础功能``预测部署``高级功能`四个部分,四个教程由浅至深地介绍PaddleSeg的设计思路和使用方法
### 入门教程
### 快速入门
入门教程以经典的U-Net模型为例, 结合Oxford-IIIT宠物数据集,快速熟悉PaddleSeg使用流程, 详情请点击[U-Net宠物分割](https://aistudio.baidu.com/aistudio/projectDetail/102889)
* [安装说明](./docs/installation.md)
* [训练/评估/可视化](./docs/usage.md)
### 高级教程
### 基础功能
高级教程以DeepLabv3+模型为例,结合Cityscapes数据集,快速了解ASPP, Backbone网络切换,多卡Batch Norm同步等策略,详情请点击[DeepLabv3+图像分割](https://aistudio.baidu.com/aistudio/projectDetail/101696)
* [分割模型介绍](./docs/models.md)
* [预训练模型列表](./docs/model_zoo.md)
* [自定义数据的准备与标注](./docs/data_prepare.md)
* [数据和配置校验](./docs/check.md)
* [使用DeepLabv3+预训练模型](./turtorial/finetune_deeplabv3plus.md)
* [使用UNet预训练模型](./turtorial/finetune_unet.md)
* [使用ICNet预训练模型](./turtorial/finetune_icnet.md)
### 垂类模型
### 预测部署
更多特色垂类分割模型如LIP人体部件分割、人像分割、车道线分割模型可以参考[contrib](./contrib)
* [模型导出](./docs/model_export.md)
* [C++预测库使用](./inference)
* [PaddleSeg Serving服务化部署](./serving)
## 使用文档
### 高级功能
* [安装说明](./docs/installation.md)
* [数据准备](./docs/data_prepare.md)
* [数据增强](./docs/data_aug.md)
* [预训练模型](./docs/model_zoo.md)
* [训练/评估/预测(可视化)](./docs/usage.md)
* [预测库集成](./inference/README.md)
* [服务端部署](./serving/README.md)
* [垂类分割模型](./contrib/README.md)
* [PaddleSeg的数据增强](./docs/data_aug.md)
* [特色垂类模型使用](./contrib)
</br>
## FAQ
#### Q: 安装requirements.txt指定的依赖包时,部分包提示找不到?
A: 可能是pip源的问题,这种情况下建议切换为官方源
#### Q:图像分割的数据增强如何配置,unpadding, step-scaling, range-scaling的原理是什么?
A: 数据增强的配置可以参考文档[数据增强](./docs/data_aug.md)
A: 更详细数据增强文档可以参考[数据增强](./docs/data_aug.md)
#### Q: 预测时图片过大,导致显存不足如何处理?
A: 降低Batch size,使用Group Norm策略等。
</br>
## 在线体验
PaddleSeg提供了多种预训练模型,并且以NoteBook的方式提供了在线体验的教程,欢迎体验:
|教程|链接|
|-|-|
|U-Net宠物分割|[点击体验](https://aistudio.baidu.com/aistudio/projectDetail/102889)|
|PaddleSeg人像分割|[点击体验](https://aistudio.baidu.com/aistudio/projectDetail/100798)|
|DeepLabv3+图像分割|[点击体验](https://aistudio.baidu.com/aistudio/projectDetail/101696)|
|PaddleSeg特色垂类模型|[点击体验](https://aistudio.baidu.com/aistudio/projectdetail/115541)|
</br>
## 更新日志
### 2019.08.26
* 2019.08.26
#### v0.1.0
**`v0.1.0`**
* PaddleSeg分割库初始版本发布,包含DeepLabv3+, U-Net, ICNet三类分割模型, 其中DeepLabv3+支持Xception, MobileNet两种可调节的骨干网络。
* CVPR19 LIP人体部件分割比赛冠军预测模型发布[ACE2P](./contrib/ACE2P)
* 预置基于DeepLabv3+网络的[人像分割](./contrib/HumanSeg/)[车道线分割](./contrib/RoadLine)预测模型发布
* PaddleSeg分割库初始版本发布,包含DeepLabv3+, U-Net, ICNet三类分割模型, 其中DeepLabv3+支持Xception, MobileNet两种可调节的骨干网络。
* CVPR 19' LIP人体部件分割比赛冠军预测模型发布[ACE2P](./contrib/ACE2P)
* 预置基于DeepLabv3+网络的[人像分割](./contrib/HumanSeg/)[车道线分割](./contrib/RoadLine)预测模型发布
</br>
## 如何贡献代码
......
......@@ -10,18 +10,6 @@ AUG:
MIN_SCALE_FACTOR: 0.5 # for stepscaling
SCALE_STEP_SIZE: 0.25 # for stepscaling
MIRROR: True
RICH_CROP:
ENABLE: False
ASPECT_RATIO: 0.33
BLUR: True
BLUR_RATIO: 0.1
FLIP: True
FLIP_RATIO: 0.2
MAX_ROTATION: 15
MIN_AREA_RATIO: 0.5
BRIGHTNESS_JITTER_RATIO: 0.5
CONTRAST_JITTER_RATIO: 0.5
SATURATION_JITTER_RATIO: 0.5
BATCH_SIZE: 4
DATASET:
DATA_DIR: "./dataset/cityscapes/"
......@@ -44,8 +32,7 @@ TEST:
TEST_MODEL: "snapshots/cityscape_v5/final/"
TRAIN:
MODEL_SAVE_DIR: "snapshots/cityscape_v7/"
PRETRAINED_MODEL: u"pretrain/deeplabv3plus_gn_init"
RESUME: False
PRETRAINED_MODEL_DIR: "pretrain/deeplabv3plus_gn_init"
SNAPSHOT_EPOCH: 10
SOLVER:
LR: 0.001
......
......@@ -12,18 +12,6 @@ AUG:
MIN_SCALE_FACTOR: 0.75 # for stepscaling
SCALE_STEP_SIZE: 0.25 # for stepscaling
MIRROR: True
RICH_CROP:
ENABLE: False
ASPECT_RATIO: 0.33
BLUR: True
BLUR_RATIO: 0.1
FLIP: True
FLIP_RATIO: 0.2
MAX_ROTATION: 15
MIN_AREA_RATIO: 0.5
BRIGHTNESS_JITTER_RATIO: 0.5
CONTRAST_JITTER_RATIO: 0.5
SATURATION_JITTER_RATIO: 0.5
BATCH_SIZE: 4
DATASET:
DATA_DIR: "./dataset/mini_pet/"
......@@ -45,8 +33,7 @@ TEST:
TEST_MODEL: "./test/saved_model/unet_pet/final/"
TRAIN:
MODEL_SAVE_DIR: "./test/saved_models/unet_pet/"
PRETRAINED_MODEL: "./test/models/unet_coco/"
RESUME: False
PRETRAINED_MODEL_DIR: "./test/models/unet_coco/"
SNAPSHOT_EPOCH: 10
SOLVER:
NUM_EPOCHS: 500
......
# Augmented Context Embedding with Edge Perceiving(ACE2P)
- 类别: 图像-语义分割
- 网络: ACE2P
- 数据集: LIP
## 模型概述
人体解析(Human Parsing)是细粒度的语义分割任务,旨在识别像素级别的人类图像的组成部分(例如,身体部位和服装)。ACE2P通过融合底层特征、全局上下文信息和边缘细节,
端到端训练学习人体解析任务。以ACE2P单人人体解析网络为基础的解决方案在CVPR2019第三届LIP挑战赛中赢得了全部三个人体解析任务的第一名
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
TEST_PATH = os.path.join(LOCAL_PATH, "..", "test")
sys.path.append(TEST_PATH)
from test_utils import download_file_and_uncompress
def download_cityscapes_dataset(savepath, extrapath):
url = "https://paddleseg.bj.bcebos.com/dataset/cityscapes.tar"
download_file_and_uncompress(
url=url, savepath=savepath, extrapath=extrapath)
if __name__ == "__main__":
download_cityscapes_dataset(LOCAL_PATH, LOCAL_PATH)
print("Dataset download finish!")
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
TEST_PATH = os.path.join(LOCAL_PATH, "..", "test")
sys.path.append(TEST_PATH)
from test_utils import download_file_and_uncompress
def download_pet_dataset(savepath, extrapath):
url = "https://paddleseg.bj.bcebos.com/dataset/mini_pet.zip"
download_file_and_uncompress(
url=url, savepath=savepath, extrapath=extrapath)
if __name__ == "__main__":
download_pet_dataset(LOCAL_PATH, LOCAL_PATH)
print("Dataset download finish!")
......@@ -11,7 +11,7 @@
打开终端输入`labelme`会出现LableMe的交互界面,可以先预览`LabelMe`给出的已标注好的图片,再开始标注自定义数据集。
<div align="center">
<img src="./docs/imgs/annotation/image-1.png" width="600px"/>
<img src="../imgs/annotation/image-1.png" width="600px"/>
<p>图1 LableMe交互界面的示意图</p>
</div>
......@@ -24,7 +24,7 @@ git clone https://github.com/wkentaro/labelme
终端输入`labelme`会出现LableMe的交互界面,点击`OpenDir`打开`<path/to/labelme>/examples/semantic_segmentation/data_annotated`,其中`<path/to/labelme>`为克隆下来的`labelme`的路径,打开后示意的是语义分割的真值标注。
<div align="center">
<img src="./docs/imgs/annotation/image-2.png" width="600px"/>
<img src="../imgs/annotation/image-2.png" width="600px"/>
<p>图2 已标注图片的示意图</p>
</div>
......@@ -35,15 +35,15 @@ git clone https://github.com/wkentaro/labelme
​ (1) 点击`OpenDir`打开待标注图片所在目录,点击`Create Polygons`,沿着目标的边缘画多边形,完成后输入目标的类别。在标注过程中,如果某个点画错了,可以按撤销快捷键可撤销该点。Mac下的撤销快捷键为`command+Z`
<div align="center">
<img src="./docs/imgs/annotation/image-3.png" width="600px"/>
<img src="../imgs/annotation/image-3.png" width="600px"/>
<p>图3 标注单个目标的示意图</p>
</div>
​ (2) 右击选择`Edit Polygons`可以整体移动多边形的位置,也可以移动某个点的位置;右击选择`Edit Label`可以修改每个目标的类别。请根据自己的需要执行这一步骤,若不需要修改,可跳过。
<div align="center">
<img src="./docs/imgs/annotation/image-4-1.png" width="00px" />
<img src="./docs/imgs/annotation/image-4-2.png" width="600px"/>
<img src="../imgs/annotation/image-4-1.png" width="00px" />
<img src="../imgs/annotation/image-4-2.png" width="600px"/>
<p>图4 修改标注的示意图</p>
</div>
......@@ -52,7 +52,7 @@ git clone https://github.com/wkentaro/labelme
LableMe产出的真值文件可参考我们给出的文件夹`data_annotated`
<div align="center">
<img src="./docs/imgs/annotation/image-5.png" width="600px"/>
<img src="../imgs/annotation/image-5.png" width="600px"/>
<p>图5 LableMe产出的真值文件的示意图</p>
</div>
......@@ -71,7 +71,7 @@ LableMe产出的真值文件可参考我们给出的文件夹`data_annotated`。
```
<div align="center">
<img src="./docs/imgs/annotation/image-6.png" width="600px"/>
<img src="../imgs/annotation/image-6.png" width="600px"/>
<p>图6 训练所需的数据集目录的结构示意图</p>
</div>
......@@ -92,6 +92,6 @@ pip install pillow
转换得到的数据集可参考我们给出的文件夹`my_dataset`。其中,文件`class_names.txt`是数据集中所有标注类别的名称,包含背景类;文件夹`JPEGImages`保存的是数据集的图片;文件夹`SegmentationClassPNG`保存的是各图片的像素级别的真值信息,背景类`_background_`对应为0,其它目标类别从1开始递增,至多为255。
<div align="center">
<img src="./docs/imgs/annotation/image-7.png" width="600px"/>
<img src="../imgs/annotation/image-7.png" width="600px"/>
<p>图7 训练所需的数据集各目录的内容示意图</p>
</div>
# 配置/数据校验
对用户自定义的数据集和yaml配置进行校验,帮助用户排查基本的数据和配置问题。
数据校验脚本如下,支持通过`YAML_FILE_PATH`来指定配置文件。
```
# YAML_FILE_PATH为yaml配置文件路径
python pdseg/check.py --cfg ${YAML_FILE_PATH}
```
运行后,命令行将显示校验结果的概览信息,详细信息可到detail.log文件中查看。
### 1 列表分割符校验
判断在`TRAIN_FILE_LIST``VAL_FILE_LIST``TEST_FILE_LIST`列表文件中的分隔符`DATASET.SEPARATOR`设置是否正确。
### 2 数据集读取校验
通过是否能成功读取`DATASET.TRAIN_FILE_LIST``DATASET.VAL_FILE_LIST``DATASET.TEST_FILE_LIST`中所有图片,判断这3项设置是否正确。
若不正确返回错误信息。错误可能有多种情况,如数据集路径设置错误、图片损坏等。
### 3 标注格式校验
检查标注图像是否为PNG格式。
**NOTE:** 标注图像请使用PNG无损压缩格式的图片,若使用其他格式则可能影响精度。
### 4 标注通道数校验
检查标注图的通道数。正确的标注图应该为单通道图像。
### 5 标注类别校验
检查实际标注类别是否和配置参数`DATASET.NUM_CLASSES``DATASET.IGNORE_INDEX`匹配。
**NOTE:**
标注图像类别数值必须在[0~(`DATASET.NUM_CLASSES`-1)]范围内或者为`DATASET.IGNORE_INDEX`
标注类别最好从0开始,否则可能影响精度。
### 6 标注像素统计
统计每种类别像素数量,显示以供参考。
### 7 图像格式校验
检查图片类型`DATASET.IMAGE_TYPE`是否设置正确。
**NOTE:** 当数据集包含三通道图片时`DATASET.IMAGE_TYPE`设置为rgb;
当数据集全部为四通道图片时`DATASET.IMAGE_TYPE`设置为rgba;
### 8 图像与标注图尺寸一致性校验
验证图像尺寸和对应标注图尺寸是否一致。
### 9 模型验证参数`EVAL_CROP_SIZE`校验
验证`EVAL_CROP_SIZE`是否设置正确,共有3种情形:
-`AUG.AUG_METHOD`为unpadding时,`EVAL_CROP_SIZE`的宽高应不小于`AUG.FIX_RESIZE_SIZE`的宽高。
-`AUG.AUG_METHOD`为stepscaling时,`EVAL_CROP_SIZE`的宽高应不小于原图中最大的宽高。
-`AUG.AUG_METHOD`为rangscaling时,`EVAL_CROP_SIZE`的宽高应不小于缩放后图像中最大的宽高。
我们将计算并给出`EVAL_CROP_SIZE`的建议值。
### 10 数据增强参数`AUG.INF_RESIZE_VALUE`校验
验证`AUG.INF_RESIZE_VALUE`是否在[`AUG.MIN_RESIZE_VALUE`~`AUG.MAX_RESIZE_VALUE`]范围内。若在范围内,则通过校验。
......@@ -8,7 +8,7 @@ BASIC Group存放所有通用配置
### 默认值
[104.008, 116.669, 122.675]
[0.5, 0.5, 0.5]
<br/>
<br/>
......@@ -19,7 +19,7 @@ BASIC Group存放所有通用配置
### 默认值
[1.000, 1.000, 1.000]
[0.5, 0.5, 0.5]
<br/>
<br/>
......@@ -65,5 +65,7 @@ BASIC Group存放所有通用配置
* 增大BATCH_SIZE有利于模型训练时的收敛速度,但是会带来显存的开销。请根据实际情况评估后填写合适的值
* 目前PaddleSeg提供的很多预训练模型都有BN层,如果BATCH SIZE设置为1,则此时训练可能不稳定导致nan
<br/>
<br/>
......@@ -13,7 +13,7 @@ DATALOADER Group存放所有与数据加载相关的配置
### 注意事项
* 该选项只在`pdseg/train.py``pdseg/eval.py`中使用到
* 当使用多线程时,该字段表示线程数量,使用多进程时,该字段表示进程数量。一般该字段使用默认值即可
* 该字段表示数据预处理时的进程数量,只有在`pdseg/train.py`或者`pdseg/eval.py`中打开了`--use_mpio`开关有效。一般该字段使用默认值即可
<br/>
<br/>
......
......@@ -11,7 +11,7 @@ TRAIN Group存放所有和训练相关的配置
<br/>
<br/>
## `PRETRAINED_MODEL`
## `PRETRAINED_MODEL_DIR`
预训练模型路径
## 默认值
......@@ -28,19 +28,15 @@ TRAIN Group存放所有和训练相关的配置
<br/>
<br/>
## `RESUME`
是否从预训练模型中恢复参数并继续训练
## `RESUME_MODEL_DIR`
从指定路径中恢复参数并继续训练
## 默认值
False
## 注意事项
* 当该字段被置为True且`PRETRAINED_MODEL`不存在时,该选项不生效
* 当该字段被置为True且`PRETRAINED_MODEL`存在时,PaddleSeg会恢复到上一次训练的最近一个epoch,并且恢复训练过程中的临时变量(如已经衰减过的学习率,Optimizer的动量数据等)
* 当该字段被置为True且`PRETRAINED_MODEL`存在时,`PRETRAINED_MODEL`路径的最后一个目录必须为int数值或者字符串final,PaddleSeg会将int数值作为当前起始EPOCH继续训练,若目录为final,则不会继续训练。若目录不满足上述条件,PaddleSeg会抛出错误。
*`RESUME_MODEL_DIR`存在时,PaddleSeg会恢复到上一次训练的最近一个epoch,并且恢复训练过程中的临时变量(如已经衰减过的学习率,Optimizer的动量数据等),`PRETRAINED_MODEL`路径的最后一个目录必须为int数值或者字符串final,PaddleSeg会将int数值作为当前起始EPOCH继续训练,若目录为final,则不会继续训练。若目录不满足上述条件,PaddleSeg会抛出错误。
<br/>
<br/>
......@@ -57,4 +53,4 @@ False
* 仅在GPU多卡训练时该开关有效(Windows不支持多卡训练,因此无需打开该开关)
* GPU多卡训练时,建议开启该开关,可以提升模型的训练效果
\ No newline at end of file
* GPU多卡训练时,建议开启该开关,可以提升模型的训练效果
......@@ -55,7 +55,7 @@ rich crop是指对图像进行多种变换,保证在训练过程中数据的
- 输入图片格式
- 原图
- 图片格式:rgb三通道图片和rgba四通道图片两种类型的图片进行训练,但是在一次训练过程只能存在一种格式。
- 图片格式:RGB三通道图片和RGBA四通道图片两种类型的图片进行训练,但是在一次训练过程只能存在一种格式。
- 图片转换:灰度图片经过预处理后之后会转变成三通道图片
- 图片参数设置:当图片为三通道图片时IMAGE_TYPE设置为rgb, 对应MEAN和STD也必须是一个长度为3的list,当图片为四通道图片时IMAGE_TYPE设置为rgba,对应的MEAN和STD必须是一个长度为4的list。
- 标注图
......
......@@ -58,50 +58,3 @@ PaddleSeg采用通用的文件列表方式组织训练集、验证集和测试
![cityscapes_filelist](./imgs/file_list.png)
完整的配置信息可以参考[`./dataset/cityscapes_demo`](../dataset/cityscapes_demo/)目录下的yaml和文件列表。
## 数据校验
从7方面对用户自定义的数据集和yaml配置进行校验,帮助用户排查基本的数据和配置问题。
数据校验脚本如下,支持通过`YAML_FILE_PATH`来指定配置文件。
```
# YAML_FILE_PATH为yaml配置文件路径
python pdseg/check.py --cfg ${YAML_FILE_PATH}
```
### 1 数据集基本校验
* 数据集路径检查,包括`DATASET.TRAIN_FILE_LIST``DATASET.VAL_FILE_LIST``DATASET.TEST_FILE_LIST`设置是否正确。
* 列表分割符检查,判断在`TRAIN_FILE_LIST``VAL_FILE_LIST``TEST_FILE_LIST`列表文件中的分隔符`DATASET.SEPARATOR`设置是否正确。
### 2 标注类别校验
检查实际标注类别是否和配置参数`DATASET.NUM_CLASSES``DATASET.IGNORE_INDEX`匹配。
**NOTE:**
标注图像类别数值必须在[0~(`DATASET.NUM_CLASSES`-1)]范围内或者为`DATASET.IGNORE_INDEX`
标注类别最好从0开始,否则可能影响精度。
### 3 标注像素统计
统计每种类别像素数量,显示以供参考。
### 4 标注格式校验
检查标注图像是否为PNG格式。
**NOTE:** 标注图像请使用PNG无损压缩格式的图片,若使用其他格式则可能影响精度。
### 5 图像格式校验
检查图片类型`DATASET.IMAGE_TYPE`是否设置正确。
**NOTE:** 当数据集包含三通道图片时`DATASET.IMAGE_TYPE`设置为rgb;
当数据集全部为四通道图片时`DATASET.IMAGE_TYPE`设置为rgba;
### 6 图像与标注图尺寸一致性校验
验证图像尺寸和对应标注图尺寸是否一致。
### 7 模型验证参数`EVAL_CROP_SIZE`校验
验证`EVAL_CROP_SIZE`是否设置正确,共有3种情形:
-`AUG.AUG_METHOD`为unpadding时,`EVAL_CROP_SIZE`的宽高应不小于`AUG.FIX_RESIZE_SIZE`的宽高。
-`AUG.AUG_METHOD`为stepscaling时,`EVAL_CROP_SIZE`的宽高应不小于原图中最大的宽高。
-`AUG.AUG_METHOD`为rangscaling时,`EVAL_CROP_SIZE`的宽高应不小于缩放后图像中最大的宽高。
我们将计算并给出`EVAL_CROP_SIZE`的建议值。
......@@ -2,17 +2,18 @@
## 推荐开发环境
* Python2.7 or 3.5+
* Python 2.7 or 3.5+
* CUDA 9.2
* cudnn v7.1
* NVIDIA cuDNN v7.1
* PaddlePaddle >= 1.5.2
* 如果有多卡训练需求,请安装 NVIDIA NCCL >= 2.4.7,并在Linux环境下运行
## 1. 安装PaddlePaddle
### pip安装
由于图像分割任务模型计算量大,强烈推荐在GPU版本的paddlepaddle下使用PaddleSeg.
由于图像分割模型计算开销大,推荐在GPU版本的PaddlePaddle下使用PaddleSeg.
```
pip install paddlepaddle-gpu
......@@ -26,7 +27,7 @@ PaddlePaddle最新版本1.5支持Conda安装,可以减少相关依赖安装成
conda install -c paddle paddlepaddle-gpu cudatoolkit=9.0
```
更多安装方式详情可以查看 [PaddlePaddle快速开始](https://www.paddlepaddle.org.cn/start)
更多安装方式详情可以查看 [PaddlePaddle安装说明](https://www.paddlepaddle.org.cn/documentation/docs/zh/beginners_guide/install/index_cn.html)
## 2. 下载PaddleSeg代码
......@@ -39,14 +40,6 @@ git clone https://github.com/PaddlePaddle/PaddleSeg
## 3. 安装PaddleSeg依赖
```
cd PaddleSeg
pip install -r requirements.txt
```
## 4. 本地流程测试
通过执行以下命令,会完整执行数据下载,训练,可视化,预测模型导出四个环节,用于验证PaddleSeg安装和依赖是否正常。
```
python test/local_test_cityscapes.py
```
\ No newline at end of file
# 模型导出
通过训练得到一个满足要求的模型后,如果想要将该模型接入到C++预测库或者Serving服务,我们需要通过`pdseg/export_model.py`来导出该模型。
该脚本的使用方法和`train.py/eval.py/vis.py`完全一样
## FLAGS
|FLAG|用途|默认值|备注|
|-|-|-|-|
|--cfg|配置文件路径|None||
## 使用示例
我们使用[训练/评估/可视化](./usage.md)一节中训练得到的模型进行试用,脚本如下
```shell
python pdseg/export_model.py --cfg configs/unet_pet.yaml TEST.TEST_MODEL test/saved_models/unet_pet/final
```
模型会导出到freeze_model目录
# PaddleSeg 预训练模型
PaddleSeg对所有内置的分割模型都提供了公开数据集下的预训练模型,通过加载预训练模型后训练可以在自定义数据集中得到更稳定地效果。
PaddleSeg对所有内置的分割模型都提供了公开数据集下的预训练模型,通过加载预训练模型后训练可以在自定义数据集中得到更稳定地效果。
## ImageNet预训练模型
所有Imagenet预训练模型来自于PaddlePaddle图像分类库,想获取更多细节请点击[这里](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification))
所有Imagenet预训练模型来自于PaddlePaddle图像分类库,想获取更多细节请点击[这里](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification)
| 模型 | 数据集合 | Depth multiplier | 模型加载config设置 | 下载地址 | Accuray Top1/5 Error|
|---|---|---|---|---|---|
| MobieNetV2_1.0x | ImageNet | 1.0x | MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEFAULT_NORM_TYPE: bn| [MobileNetV2_1.0x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | 72.15%/90.65% |
| MobieNetV2_0.25x | ImageNet | 0.25x | MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 0.25 <br> MODEL.DEFAULT_NORM_TYPE: bn |[MobileNetV2_0.25x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar) | 53.21%/76.52% |
| MobieNetV2_0.5x | ImageNet | 0.5x | MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 0.5 <br> MODEL.DEFAULT_NORM_TYPE: bn | [MobileNetV2_0.5x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar) | 65.03%/85.72% |
| MobieNetV2_1.5x | ImageNet | 1.5x | MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.5 <br> MODEL.DEFAULT_NORM_TYPE: bn| [MobileNetV2_1.5x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar) | 74.12%/91.67% |
| MobieNetV2_2.0x | ImageNet | 2.0x | MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 2.0 <br> MODEL.DEFAULT_NORM_TYPE: bn | [MobileNetV2_2.0x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar) | 75.23%/92.58% |
| 模型 | 数据集合 | Depth multiplier | 下载地址 | Accuray Top1/5 Error|
|---|---|---|---|---|
| MobieNetV2_1.0x | ImageNet | 1.0x | [MobileNetV2_1.0x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) | 72.15%/90.65% |
| MobieNetV2_0.25x | ImageNet | 0.25x |[MobileNetV2_0.25x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar) | 53.21%/76.52% |
| MobieNetV2_0.5x | ImageNet | 0.5x | [MobileNetV2_0.5x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar) | 65.03%/85.72% |
| MobieNetV2_1.5x | ImageNet | 1.5x | [MobileNetV2_1.5x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar) | 74.12%/91.67% |
| MobieNetV2_2.0x | ImageNet | 2.0x | [MobileNetV2_2.0x](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar) | 75.23%/92.58% |
用户可以结合实际场景的精度和预测性能要求,选取不同`Depth multiplier`参数的MobileNet模型。
| 模型 | 数据集合 | 模型加载config设置 | 下载地址 | Accuray Top1/5 Error |
|---|---|---|---|---|
| Xception41 | ImageNet | MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_41 <br> MODEL.DEFAULT_NORM_TYPE: bn| [Xception41_pretrained.tgz](https://paddleseg.bj.bcebos.com/models/Xception41_pretrained.tgz) | 79.5%/94.38% |
| Xception65 | ImageNet | MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn| [Xception65_pretrained.tgz](https://paddleseg.bj.bcebos.com/models/Xception65_pretrained.tgz) | 80.32%/94.47% |
| Xception71 | ImageNet | MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_71 <br> MODEL.DEFAULT_NORM_TYPE: bn| coming soon | -- |
| 模型 | 数据集合 | 下载地址 | Accuray Top1/5 Error |
|---|---|---|---|
| Xception41 | ImageNet | [Xception41_pretrained.tgz](https://paddleseg.bj.bcebos.com/models/Xception41_pretrained.tgz) | 79.5%/94.38% |
| Xception65 | ImageNet | [Xception65_pretrained.tgz](https://paddleseg.bj.bcebos.com/models/Xception65_pretrained.tgz) | 80.32%/94.47% |
| Xception71 | ImageNet | coming soon | -- |
## COCO预训练模型
train数据集为coco instance分割数据集合转换成的语义分割数据集合
数据集为COCO实例分割数据集合转换成的语义分割数据集合
| 模型 | 数据集合 | 模型加载config设置 | 下载地址 |Output Strid|multi-scale test| mIoU |
|---|---|---|---|---|---|---|
| DeepLabv3+/MobileNetv2/bn | COCO | MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEFAULT_NORM_TYPE: bn|[deeplabv3plus_coco_bn_init.tgz](https://bj.bcebos.com/v1/paddleseg/deeplabv3plus_coco_bn_init.tgz) | 16 | --| -- |
| DeeplabV3+/Xception65/bn | COCO | MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn | [xception65_coco.tgz](https://paddleseg.bj.bcebos.com/models/xception65_coco.tgz)| 16 | -- | -- |
| UNet/bn | COCO | MODEL.MODEL_NEME: unet <br> MODEL.DEFAULT_NORM_TYPE: bn | [unet](https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz) | 16 | -- | -- |
| 模型 | 数据集合 | 下载地址 |Output Strid|multi-scale test| mIoU |
|---|---|---|---|---|---|
| DeepLabv3+/MobileNetv2/bn | COCO |[deeplabv3plus_coco_bn_init.tgz](https://bj.bcebos.com/v1/paddleseg/deeplabv3plus_coco_bn_init.tgz) | 16 | --| -- |
| DeeplabV3+/Xception65/bn | COCO | [xception65_coco.tgz](https://paddleseg.bj.bcebos.com/models/xception65_coco.tgz)| 16 | -- | -- |
| U-Net/bn | COCO | [unet_coco.tgz](https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz) | 16 | -- | -- |
## Cityscapes预训练模型
train数据集合为Cityscapes 训练集合,测试为Cityscapes的验证集合
train数据集合为Cityscapes训练集合,测试为Cityscapes的验证集合
| 模型 | 数据集合 | 模型加载config设置 | 下载地址 |Output Stride| mutli-scale test| mIoU on val|
|---|---|---|---|---|---|---|
| DeepLabv3+/MobileNetv2/bn | Cityscapes |MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEEPLAB.ENCODER_WITH_ASPP: False <br> MODEL.DEEPLAB.ENABLE_DECODER: False <br> MODEL.DEFAULT_NORM_TYPE: bn|[mobilenet_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |16|false| 0.698|
| DeepLabv3+/Xception65/gn | Cityscapes |MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: gn | [deeplabv3p_xception65_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/deeplabv3p_xception65_cityscapes.tgz) |16|false| 0.7804 |
| DeepLabv3+/Xception65/bn | Cityscapes | MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn| [Xception65_deeplab_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz) | 16 | false | 0.7715 |
| ICNet/bn | Cityscapes | MODEL.MODEL_NAME: icnet <br> MODEL.DEFAULT_NORM_TYPE: bn | [icnet_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/icnet_cityscapes.tgz) |16|false| 0.6854 |
| 模型 | 数据集合 | 下载地址 |Output Stride| mutli-scale test| mIoU on val|
|---|---|---|---|---|---|
| DeepLabv3+/MobileNetv2/bn | Cityscapes |[mobilenet_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |16|false| 0.698|
| DeepLabv3+/Xception65/gn | Cityscapes |[deeplabv3p_xception65_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/deeplabv3p_xception65_cityscapes.tgz) |16|false| 0.7804 |
| DeepLabv3+/Xception65/bn | Cityscapes |[Xception65_deeplab_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz) | 16 | false | 0.7715 |
| ICNet/bn | Cityscapes |[icnet_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/icnet6831.tar.gz) |16|false| 0.6831 |
# PaddleSeg 模型列表
# PaddleSeg 分割模型介绍
### U-Net
U-Net 起源于医疗图像分割,整个网络是标准的encoder-decoder网络,特点是参数少,计算快,应用性强,对于一般场景适应度很高。
......
PaddleSeg提供了 `训练`/`评估`/`预测(可视化)`/`模型导出` 等四个功能的使用脚本。四个脚本都支持通过不同的Flags来开启特定功能,也支持通过Options来修改默认的[训练配置](./config.md)。四者的使用方式非常接近,如下:
# 训练/评估/可视化
PaddleSeg提供了 `训练`/`评估`/`可视化` 等三个功能的使用脚本。三个脚本都支持通过不同的Flags来开启特定功能,也支持通过Options来修改默认的[训练配置](./config.md)。三者的使用方式非常接近,如下:
```shell
# 训练
python pdseg/train.py ${FLAGS} ${OPTIONS}
# 评估
python pdseg/eval.py ${FLAGS} ${OPTIONS}
# 预测/可视化
# 可视化
python pdseg/vis.py ${FLAGS} ${OPTIONS}
# 模型导出
python pdseg/export_model.py ${FLAGS} ${OPTIONS}
```
`Note`:
......@@ -25,7 +25,7 @@ python pdseg/export_model.py ${FLAGS} ${OPTIONS}
|FLAG|支持脚本|用途|默认值|备注|
|-|-|-|-|-|
|--cfg|ALL|配置文件路径|None||
|--use_gpu|train/eval/vis|是否使用GPU进行训练|False||
|--use_gpu|ALL|是否使用GPU进行训练|False||
|--use_mpio|train/eval|是否使用多线程进行IO处理|False|打开该开关会占用一定量的CPU内存,但是可以提高训练速度。</br> NOTE:windows平台下不支持该功能, 建议使用自定义数据初次训练时不打开,打开会导致数据读取异常不可见。 </br> |
|--use_tb|train|是否使用TensorBoard记录训练数据|False||
|--log_steps|train|训练日志的打印周期(单位为step)|10||
......@@ -40,67 +40,57 @@ python pdseg/export_model.py ${FLAGS} ${OPTIONS}
详见[训练配置](./config.md)
## 使用示例
下面通过一个简单的示例,说明如何使用PaddleSeg提供的预训练模型进行finetune。我们选择基于COCO数据集预训练的unet模型作为pretrained模型,在一个Oxford-IIIT Pet数据集上进行finetune
下面通过一个简单的示例,说明如何基于PaddleSeg提供的预训练模型启动训练。我们选择基于COCO数据集预训练的unet模型作为预训练模型,在一个Oxford-IIIT Pet数据集上进行训练
**Note:** 为了快速体验,我们使用Oxford-IIIT Pet做了一个小型数据集,后续数据都使用该小型数据集。
### 准备工作
在开始教程前,请先确认准备工作已经完成:
1. 下载合适版本的paddlepaddle
1. 正确安装了PaddlePaddle
2. PaddleSeg相关依赖已经安装
如果有不确认的地方,请参考[安装说明](./installation.md)
### 下载预训练模型
```shell
# 下载预训练模型
wget https://bj.bcebos.com/v1/paddleseg/models/unet_coco_init.tgz
# 解压缩到当前路径下
tar xvzf unet_coco_init.tgz
# 下载预训练模型并进行解压
python pretrained_model/download_model.py unet_bn_coco
```
### 下载Oxford-IIIT数据集
### 下载mini_pet数据集
我们使用了Oxford-IIIT中的猫和狗两个类别数据制作了一个小数据集mini_pet,用于快速体验
```shell
# 下载Oxford-IIIT Pet数据集
wget https://paddleseg.bj.bcebos.com/dataset/mini_pet.zip --no-check-certificate
# 解压缩到当前路径下
unzip mini_pet.zip
# 下载预训练模型并进行解压
python dataset/download_pet.py
```
### Finetune
接着开始Finetune,为了方便体验,我们在configs目录下放置了Oxford-IIIT Pet所对应的配置文件`unet_pet.yaml`,可以通过`--cfg`指向该文件来设置训练配置。
### 模型训练
我们选择两张GPU进行训练,这可以通过环境变量`CUDA_VISIBLE_DEVICES`来指定
为了方便体验,我们在configs目录下放置了mini_pet所对应的配置文件`unet_pet.yaml`,可以通过`--cfg`指向该文件来设置训练配置
除此之外,我们指定总BATCH_SIZE为4,PaddleSeg会根据可用的GPU数量,将数据平分到每张卡上,务必确保BATCH_SIZE为GPU数量的整数倍(在本例中,每张卡的BATCH_SIZE为2)
我们选择GPU 0号卡进行训练,这可以通过环境变量`CUDA_VISIBLE_DEVICES`来指定
```
export CUDA_VISIBLE_DEVICES=0,1
export CUDA_VISIBLE_DEVICES=0
python pdseg/train.py --use_gpu \
--do_eval \
--use_tb \
--tb_log_dir train_log \
--cfg configs/unet_pet.yaml \
BATCH_SIZE 4 \
TRAIN.PRETRAINED_MODEL unet_coco_init \
DATASET.DATA_DIR mini_pet \
DATASET.TEST_FILE_LIST mini_pet/file_list/test_list.txt \
DATASET.TRAIN_FILE_LIST mini_pet/file_list/train_list.txt \
DATASET.VAL_FILE_LIST mini_pet/file_list/val_list.txt \
DATASET.VIS_FILE_LIST mini_pet/file_list/val_list.txt \
TRAIN.PRETRAINED_MODEL_DIR pretrained_model/unet_bn_coco \
TRAIN.SYNC_BATCH_NORM True \
SOLVER.LR 5e-5
```
`NOTE`:
> * 上述示例中,一共存在三套配置方案: PaddleSeg默认配置/unet_pet.yaml/OPTIONS,三者的优先级顺序为 OPTIONS > yaml > 默认配置。这个原则对于train.py/eval.py/vis.py/export_model.py都适用
> * 上述示例中,一共存在三套配置方案: PaddleSeg默认配置/unet_pet.yaml/OPTIONS,三者的优先级顺序为 OPTIONS > yaml > 默认配置。这个原则对于train.py/eval.py/vis.py都适用
>
> * 如果发现因为内存不足而Crash。请适当调低BATCH_SIZE。如果本机GPU内存充足,则可以调高BATCH_SIZE的大小以获得更快的训练速度
>
> * windows并不支持多卡训练
### 训练过程可视化
当打开do_eval和use_tb两个开关后,我们可以通过TensorBoard查看训练的效果
```shell
tensorboard --logdir train_log --host {$HOST_IP} --port {$PORT}
```
......@@ -121,30 +111,17 @@ NOTE:
```shell
python pdseg/eval.py --use_gpu \
--cfg configs/unet_pet.yaml \
DATASET.DATA_DIR mini_pet \
DATASET.VAL_FILE_LIST mini_pet/file_list/val_list.txt \
TEST.TEST_MODEL test/saved_models/unet_pet/final
```
### 模型预测/可视化
### 模型可视化
通过vis.py来评估模型效果,我们选择最后保存的模型进行效果的评估:
```shell
python pdseg/vis.py --use_gpu \
--cfg configs/unet_pet.yaml \
DATASET.DATA_DIR mini_pet \
DATASET.TEST_FILE_LIST mini_pet/file_list/test_list.txt \
TEST.TEST_MODEL test/saved_models/unet_pet/final
```
`NOTE`
1. 可视化的图片会默认保存在visual/visual_results目录下,可以通过`--vis_dir`来指定输出目录
2. 训练过程中会使用DATASET.VIS_FILE_LIST中的图片进行可视化显示,而vis.py则会使用DATASET.TEST_FILE_LIST
### 模型导出
当确定模型效果满足预期后,我们需要通过export_model.py来导出一个可用于部署到服务端预测的模型:
```shell
python pdseg/export_model.py --cfg configs/unet_pet.yaml \
TEST.TEST_MODEL test/saved_models/unet_pet/final
```
模型会导出到freeze_model目录,接下来就是进行模型的部署,相关步骤,请查看[模型部署](../inference/README.md)
......@@ -36,7 +36,7 @@ if (NOT DEFINED OPENCV_DIR OR ${OPENCV_DIR} STREQUAL "")
endif()
include_directories("${CMAKE_SOURCE_DIR}/")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/ext/yaml-cpp/src/yaml-cpp/include")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/ext/yaml-cpp/src/ext-yaml-cpp/include")
include_directories("${PADDLE_DIR}/")
include_directories("${PADDLE_DIR}/third_party/install/protobuf/include")
include_directories("${PADDLE_DIR}/third_party/install/glog/include")
......@@ -82,7 +82,7 @@ if (WIN32)
add_definitions(-DSTATIC_LIB)
endif()
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -o2 -std=c++11")
set(CMAKE_STATIC_LIBRARY_PREFIX "")
endif()
......@@ -160,14 +160,13 @@ if (NOT WIN32)
set(EXTERNAL_LIB "-lrt -ldl -lpthread")
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags protobuf snappystream snappy z xxhash
glog gflags protobuf yaml-cpp snappystream snappy z xxhash
${EXTERNAL_LIB})
else()
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
opencv_world346 glog libyaml-cppmt gflags_static libprotobuf snappy zlibstatic xxhash snappystream ${EXTERNAL_LIB})
set(DEPS ${DEPS} libcmt shlwapi)
set(DEPS ${DEPS} ${YAML_CPP_LIBRARY})
endif(NOT WIN32)
if(WITH_GPU)
......@@ -206,13 +205,17 @@ ADD_LIBRARY(libpaddleseg_inference STATIC ${PADDLESEG_INFERENCE_SRCS})
target_link_libraries(libpaddleseg_inference ${DEPS})
add_executable(demo demo.cpp)
ADD_DEPENDENCIES(libpaddleseg_inference yaml-cpp)
ADD_DEPENDENCIES(demo yaml-cpp libpaddleseg_inference)
ADD_DEPENDENCIES(libpaddleseg_inference ext-yaml-cpp)
ADD_DEPENDENCIES(demo ext-yaml-cpp libpaddleseg_inference)
target_link_libraries(demo ${DEPS} libpaddleseg_inference)
add_custom_command(TARGET demo POST_BUILD
if (WIN32)
add_custom_command(TARGET demo POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/bin/mkldnn.dll ./mkldnn.dll
)
\ No newline at end of file
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll
COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_DIR}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll
)
endif()
......@@ -4,132 +4,133 @@
本目录提供一个跨平台的图像分割模型的C++预测部署方案,用户通过一定的配置,加上少量的代码,即可把模型集成到自己的服务中,完成图像分割的任务。
主要设计的目标包括以下点:
- 跨平台,支持在 windows和Linux完成编译、开发和部署
主要设计的目标包括以下点:
- 跨平台,支持在 windows 和 Linux 完成编译、开发和部署
- 支持主流图像分割任务,用户通过少量配置即可加载模型完成常见预测任务,比如人像分割等
- 可扩展性,支持用户针对新模型开发自己特殊的数据预处理、后处理等逻辑
- 高性能,除了`PaddlePaddle`自身带来的性能优势,我们还针对图像分割的特点对关键步骤进行了性能优化
## 主要目录和文件
| 文件 | 作用 |
|-------|----------|
| CMakeList.txt | cmake 编译配置文件 |
| external-cmake| 依赖的外部项目 cmake (目前仅有yaml-cpp)|
| demo.cpp | 示例C++代码,演示加载模型完成预测任务 |
| predictor | 加载模型并预测的类代码|
| preprocess |数据预处理相关的类代码|
| utils | 一些基础公共函数|
| images/humanseg | 样例人像分割模型的测试图片目录|
| conf/humanseg.yaml | 示例人像分割模型配置|
| tools/visualize.py | 预测结果彩色可视化脚本 |
## Windows平台编译
### 前置条件
* Visual Studio 2015+
* CUDA 8.0 / CUDA 9.0 + CuDNN 7
* CMake 3.0+
我们分别在 `Visual Studio 2015``Visual Studio 2019 Community` 两个版本下做了测试.
**下面所有示例,以根目录为 `D:\`演示**
### Step1: 下载代码
1. `git clone http://gitlab.baidu.com/Paddle/PaddleSeg.git`
2. 拷贝 `D:\PaddleSeg\inference\` 目录到 `D:\PaddleDeploy`下
目录`D:\PaddleDeploy\inference` 目录包含了`CMakelist.txt`以及代码等项目文件.
### Step2: 下载PaddlePaddle预测库fluid_inference
根据Windows环境,下载相应版本的PaddlePaddle预测库,并解压到`D:\PaddleDeploy\`目录
| CUDA | GPU | 下载地址 |
|------|------|--------|
| 8.0 | Yes | [fluid_inference.zip](https://bj.bcebos.com/v1/paddleseg/fluid_inference_win.zip) |
| 9.0 | Yes | [fluid_inference_cuda90.zip](https://paddleseg.bj.bcebos.com/fluid_inference_cuda9_cudnn7.zip) |
`D:\PaddleDeploy\fluid_inference`目录包含内容为:
```bash
paddle # paddle核心目录
third_party # paddle 第三方依赖
version.txt # 编译的版本信息
```
inference
├── demo.cpp # 演示加载模型、读入数据、完成预测任务C++代码
|
├── conf
│ └── humanseg.yaml # 示例人像分割模型配置
├── images
│ └── humanseg # 示例人像分割模型测试图片目录
├── tools
│ └── visualize.py # 示例人像分割模型结果可视化脚本
├── docs
| ├── linux_build.md # Linux 编译指南
| ├── windows_vs2015_build.md # windows VS2015编译指南
│ └── windows_vs2019_build.md # Windows VS2019编译指南
|
├── utils # 一些基础公共函数
|
├── preprocess # 数据预处理相关代码
|
├── predictor # 模型加载和预测相关代码
|
├── CMakeList.txt # cmake编译入口文件
|
└── external-cmake # 依赖的外部项目cmake(目前仅有yaml-cpp)
```
### Step3: 安装配置OpenCV
## 编译
支持在`Windows``Linux`平台编译和使用:
- [Linux 编译指南](./docs/linux_build.md)
- [Windows 使用 Visual Studio 2019 Community 编译指南](./docs/windows_vs2019_build.md)
- [Windows 使用 Visual Studio 2015 编译指南](./docs/windows_vs2015_build.md)
1. 在OpenCV官网下载适用于Windows平台的3.4.6版本, [下载地址](https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download)
2. 运行下载的可执行文件,将OpenCV解压至指定目录,如`D:\PaddleDeploy\opencv`
3. 配置环境变量,如下流程所示
1. 我的电脑->属性->高级系统设置->环境变量
2. 在系统变量中找到Path(如没有,自行创建),并双击编辑
3. 新建,将opencv路径填入并保存,如`D:\PaddleDeploy\opencv\build\x64\vc14\bin`
`Windows`上推荐使用最新的`Visual Studio 2019 Community`直接编译`CMake`项目。
### Step4: 以VS2015为例编译代码
## 预测并可视化结果
以下命令需根据自己系统中各相关依赖的路径进行修改
完成编译后,便生成了需要的可执行文件和链接库,然后执行以下步骤:
* 调用VS2015, 请根据实际VS安装路径进行调整,打开cmd命令行工具执行以下命令
* 其他vs版本,请查找到对应版本的`vcvarsall.bat`路径,替换本命令即可
### 1. 下载模型文件
我们提供了一个人像分割模型示例用于测试,点击右侧地址下载:[示例模型下载地址](https://paddleseg.bj.bcebos.com/inference_model/deeplabv3p_xception65_humanseg.tgz)
下载并解压,解压后目录结构如下:
```
call "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat" amd64
deeplabv3p_xception65_humanseg
├── __model__ # 模型文件
|
└── __params__ # 参数文件
```
* CMAKE编译工程
* PADDLE_DIR: fluid_inference预测库目录
* CUDA_LIB: CUDA动态库目录, 请根据实际安装情况调整
* OPENCV_DIR: OpenCV解压目录
```
# 创建CMake的build目录
D:
cd PaddleDeploy\inference
mkdir build
cd build
D:\PaddleDeploy\inference\build> cmake .. -G "Visual Studio 14 2015 Win64" -DWITH_GPU=ON -DPADDLE_DIR=D:\PaddleDeploy\fluid_inference -DCUDA_LIB=D:\PaddleDeploy\cudalib\v8.0\lib\x64 -DOPENCV_DIR=D:\PaddleDeploy\opencv -T host=x64
解压后把上述目录拷贝到合适的路径:
**假设**`Windows`系统上,我们模型和参数文件所在路径为`D:\projects\models\deeplabv3p_xception65_humanseg`
**假设**`Linux`上对应的路径则为`/root/projects/models/deeplabv3p_xception65_humanseg`
### 2. 修改配置
源代码的`conf`目录下提供了示例人像分割模型的配置文件`humanseg.yaml`, 相关的字段含义和说明如下:
```yaml
DEPLOY:
# 是否使用GPU预测
USE_GPU: 1
# 模型和参数文件所在目录路径
MODEL_PATH: "/root/projects/models/deeplabv3p_xception65_humanseg"
# 模型文件名
MODEL_FILENAME: "__model__"
# 参数文件名
PARAMS_FILENAME: "__params__"
# 预测图片的的标准输入尺寸,输入尺寸不一致会做resize
EVAL_CROP_SIZE: (513, 513)
# 均值
MEAN: [104.008, 116.669, 122.675]
# 方差
STD: [1.0, 1.0, 1.0]
# 图片类型, rgb 或者 rgba
IMAGE_TYPE: "rgb"
# 分类类型数
NUM_CLASSES: 2
# 图片通道数
CHANNELS : 3
# 预处理方式,目前提供图像分割的通用处理类SegPreProcessor
PRE_PROCESSOR: "SegPreProcessor"
# 预测模式,支持 NATIVE 和 ANALYSIS
PREDICTOR_MODE: "ANALYSIS"
# 每次预测的 batch_size
BATCH_SIZE : 3
```
修改字段`MODEL_PATH`的值为你在**上一步**下载并解压的模型文件所放置的目录即可。
这里的`cmake`参数`-G`, 可以根据自己的`VS`版本调整,具体请参考[cmake文档](https://cmake.org/cmake/help/v3.15/manual/cmake-generators.7.html)
* 生成可执行文件
### 3. 执行预测
```
D:\PaddleDeploy\inference\build> msbuild /m /p:Configuration=Release cpp_inference_demo.sln
```
### Step5: 预测及可视化
上步骤中编译生成的可执行文件和相关动态链接库并保存在build/Release目录下,可通过Windows命令行直接调用。
可下载并解压示例模型进行测试,点击下载示例的人像分割模型[下载地址](https://paddleseg.bj.bcebos.com/inference_model/deeplabv3p_xception65_humanseg.tgz)
假设解压至 `D:\PaddleDeploy\models\deeplabv3p_xception65_humanseg` ,执行以下命令:
在终端中切换到生成的可执行文件所在目录为当前目录(Windows系统为`cmd`)。
`Linux` 系统中执行以下命令:
```shell
./demo --conf=/root/projects/PaddleSeg/inference/conf/humanseg.yaml --input_dir=/root/projects/PaddleSeg/inference/images/humanseg/
```
cd Release
D:\PaddleDeploy\inference\build\Release> demo.exe --conf=D:\\PaddleDeploy\\inference\\conf\\humanseg.yaml --input_dir=D:\\PaddleDeploy\\inference\\images\humanseg\\
`Windows` 中执行以下命令:
```shell
D:\projects\PaddleSeg\inference\build\Release>demo.exe --conf=D:\\projects\\PaddleSeg\\inference\\conf\\humanseg.yaml --input_dir=D:\\projects\\PaddleSeg\\inference\\images\humanseg\\
```
预测使用的两个命令参数说明如下:
| 参数 | 含义 |
|-------|----------|
| conf | 模型配置的yaml文件路径 |
| conf | 模型配置的Yaml文件路径 |
| input_dir | 需要预测的图片目录 |
**配置文件**的样例以及字段注释说明请参考: [conf/humanseg.yaml](./conf/humanseg.yaml)
样例程序会扫描input_dir目录下的所有图片,并生成对应的预测结果图片。
配置文件说明请参考上一步,样例程序会扫描input_dir目录下的所有图片,并生成对应的预测结果图片:
文件`demo.jpg`预测的结果存储在`demo_jpg.png`中,可视化结果在`demo_jpg_scoremap.png`中, 原始尺寸的预测结果在`demo_jpg_recover.png`中。
输入原图
![avatar](images/humanseg/demo.jpg)
![avatar](images/humanseg/demo2.jpeg)
输出预测结果
![avatar](images/humanseg/demo_jpg_recover.png)
![avatar](images/humanseg/demo2_jpeg_recover.png)
DEPLOY:
USE_GPU: 1
MODEL_PATH: "C:\\PaddleDeploy\\models\\deeplabv3p_xception65_humanseg"
MODEL_PATH: "/root/projects/models/deeplabv3p_xception65_humanseg"
MODEL_NAME: "unet"
MODEL_FILENAME: "__model__"
PARAMS_FILENAME: "__params__"
EVAL_CROP_SIZE: (513, 513)
MEAN: [104.008, 116.669, 122.675]
MEAN: [0.5, 0.5, 0.5]
STD: [1.0, 1.0, 1.0]
IMAGE_TYPE: "rgb"
NUM_CLASSES: 2
CHANNELS : 3
PRE_PROCESSOR: "SegPreProcessor"
PREDICTOR_MODE: "ANALYSIS"
BATCH_SIZE : 3
\ No newline at end of file
PREDICTOR_MODE: "NATIVE"
BATCH_SIZE : 3
......@@ -21,7 +21,6 @@ int main(int argc, char** argv) {
// 2. get all the images with extension '.jpeg' at input_dir
auto imgs = PaddleSolution::utils::get_directory_images(FLAGS_input_dir, ".jpeg|.jpg");
// 3. predict
predictor.predict(imgs);
return 0;
......
# Linux平台 编译指南
## 说明
本文档在 `Linux`平台使用`GCC 4.8.5``GCC 4.9.4`测试过,如果需要使用更高G++版本编译使用,则需要重新编译Paddle预测库,请参考: [从源码编译Paddle预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_usage/deploy/inference/build_and_install_lib_cn.html#id15)
## 前置条件
* G++ 4.8.2 ~ 4.9.4
* CUDA 8.0/ CUDA 9.0
* CMake 3.0+
请确保系统已经安装好上述基本软件,**下面所有示例以工作目录为 `/root/projects/`演示**
### Step1: 下载代码
1. `mkdir -p /root/projects/ && cd /root/projects`
2. `git clone https://github.com/PaddlePaddle/PaddleSeg.git`
`C++`预测代码在`/root/projects/PaddleSeg/inference` 目录,该目录不依赖任何`PaddleSeg`下其他目录。
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
目前仅支持`CUDA 8``CUDA 9`,请点击 [PaddlePaddle预测库下载地址](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_usage/deploy/inference/build_and_install_lib_cn.html)下载对应的版本。
下载并解压后`/root/projects/fluid_inference`目录包含内容为:
```
fluid_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
|
└── version.txt # 版本和编译信息
```
### Step3: 安装配置OpenCV
```shell
# 0. 切换到/root/projects目录
cd /root/projects
# 1. 下载OpenCV3.4.6版本源代码
wget -c https://paddleseg.bj.bcebos.com/inference/opencv-3.4.6.zip
# 2. 解压
unzip opencv-3.4.6.zip && cd opencv-3.4.6
# 3. 创建build目录并编译, 这里安装到/usr/local/opencv3目录
mkdir build && cd build
cmake .. -DCMAKE_INSTALL_PREFIX=/root/projects/opencv3 -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=OFF -DWITH_ZLIB=ON -DBUILD_ZLIB=ON -DWITH_JPEG=ON -DBUILD_JPEG=ON -DWITH_PNG=ON -DBUILD_PNG=ON -DWITH_TIFF=ON -DBUILD_TIFF=ON
make -j4
make install
```
**注意:** 上述操作完成后,`opencv` 被安装在 `/root/projects/opencv3` 目录。
### Step4: 编译
`CMake`编译时,涉及到四个编译参数用于指定核心依赖库的路径, 他们的定义如下:
| 参数名 | 含义 |
| ---- | ---- |
| CUDA_LIB | cuda的库路径 |
| CUDNN_LIB | cuDnn的库路径|
| OPENCV_DIR | OpenCV的安装路径, |
| PADDLE_DIR | Paddle预测库的路径 |
执行下列操作时,**注意**把对应的参数改为你的上述依赖库实际路径:
```shell
cd /root/projects/PaddleSeg/inference
mkdir build && cd build
cmake .. -DWITH_GPU=ON -DPADDLE_DIR=/root/projects/fluid_inference -DCUDA_LIB=/usr/local/cuda/lib64/ -DOPENCV_DIR=/root/projects/opencv3/ -DCUDNN_LIB=/usr/local/cuda/lib64/
make
```
### Step5: 预测及可视化
执行命令:
```
./demo --conf=/path/to/your/conf --input_dir=/path/to/your/input/data/directory
```
更详细说明请参考ReadMe文档: [预测和可视化部分](../README.md)
# Windows平台使用 Visual Studio 2015 编译指南
本文档步骤,我们同时在`Visual Studio 2015``Visual Studio 2019 Community` 两个版本进行了测试,我们推荐使用[`Visual Studio 2019`直接编译`CMake`项目](./windows_vs2019_build.md)
## 前置条件
* Visual Studio 2015
* CUDA 8.0/ CUDA 9.0
* CMake 3.0+
请确保系统已经安装好上述基本软件,**下面所有示例以工作目录为 `D:\projects`演示**
### Step1: 下载代码
1. 打开`cmd`, 执行 `cd /d D:\projects`
2. `git clone http://gitlab.baidu.com/Paddle/PaddleSeg.git`
`C++`预测库代码在`D:\projects\PaddleSeg\inference` 目录,该目录不依赖任何`PaddleSeg`下其他目录。
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
根据Windows环境,下载相应版本的PaddlePaddle预测库,并解压到`D:\projects\`目录
| CUDA | GPU | 下载地址 |
|------|------|--------|
| 8.0 | Yes | [fluid_inference.zip](https://bj.bcebos.com/v1/paddleseg/fluid_inference_win.zip) |
| 9.0 | Yes | [fluid_inference_cuda90.zip](https://paddleseg.bj.bcebos.com/fluid_inference_cuda9_cudnn7.zip) |
解压后`D:\projects\fluid_inference`目录包含内容为:
```
fluid_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
|
└── version.txt # 版本和编译信息
```
### Step3: 安装配置OpenCV
1. 在OpenCV官网下载适用于Windows平台的3.4.6版本, [下载地址](https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download)
2. 运行下载的可执行文件,将OpenCV解压至指定目录,如`D:\PaddleDeploy\opencv`
3. 配置环境变量,如下流程所示
- 我的电脑->属性->高级系统设置->环境变量
- 在系统变量中找到Path(如没有,自行创建),并双击编辑
- 新建,将opencv路径填入并保存,如`D:\PaddleDeploy\opencv\build\x64\vc14\bin`
### Step4: 以VS2015为例编译代码
以下命令需根据自己系统中各相关依赖的路径进行修改
* 调用VS2015, 请根据实际VS安装路径进行调整,打开cmd命令行工具执行以下命令
* 其他vs版本(比如vs2019),请查找到对应版本的`vcvarsall.bat`路径,替换本命令即可
```
call "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat" amd64
```
* CMAKE编译工程
* PADDLE_DIR: fluid_inference预测库路径
* CUDA_LIB: CUDA动态库目录, 请根据实际安装情况调整
* OPENCV_DIR: OpenCV解压目录
```
# 切换到预测库所在目录
cd /d D:\projects\PaddleSeg\inference\
# 创建构建目录, 重新构建只需要删除该目录即可
mkdir build
cd build
# cmake构建VS项目
D:\projects\PaddleSeg\inference\build> cmake .. -G "Visual Studio 14 2015 Win64" -DWITH_GPU=ON -DPADDLE_DIR=D:\projects\fluid_inference -DCUDA_LIB=D:\projects\cudalib\v8.0\lib\x64 -DOPENCV_DIR=D:\projects\opencv -T host=x64
```
这里的`cmake`参数`-G`, 表示生成对应的VS版本的工程,可以根据自己的`VS`版本调整,具体请参考[cmake文档](https://cmake.org/cmake/help/v3.15/manual/cmake-generators.7.html)
* 生成可执行文件
```
D:\projects\PaddleSeg\inference\build> msbuild /m /p:Configuration=Release cpp_inference_demo.sln
```
### Step5: 预测及可视化
上述`Visual Studio 2015`编译产出的可执行文件在`build\release`目录下,切换到该目录:
```
cd /d D:\projects\PaddleSeg\inference\build\release
```
之后执行命令:
```
demo.exe --conf=/path/to/your/conf --input_dir=/path/to/your/input/data/directory
```
更详细说明请参考ReadMe文档: [预测和可视化部分](../README.md)
# Visual Studio 2019 Community CMake 编译指南
Windows 平台下,我们使用`Visual Studio 2015``Visual Studio 2019 Community` 进行了测试。微软从`Visual Studio 2017`开始即支持直接管理`CMake`跨平台编译项目,但是直到`2019`才提供了稳定和完全的支持,所以如果你想使用CMake管理项目编译构建,我们推荐你使用`Visual Studio 2019`环境下构建。
你也可以使用和`VS2015`一样,通过把`CMake`项目转化成`VS`项目来编译,其中**有差别的部分**在文档中我们有说明,请参考:[使用Visual Studio 2015 编译指南](./windows_vs2015_build.md)
## 前置条件
* Visual Studio 2019
* CUDA 8.0/ CUDA 9.0
* CMake 3.0+
请确保系统已经安装好上述基本软件,我们使用的是`VS2019`的社区版。
**下面所有示例以工作目录为 `D:\projects`演示**
### Step1: 下载代码
1. 点击下载源代码:[下载地址](https://github.com/PaddlePaddle/PaddleSeg/archive/master.zip)
2. 解压,解压后目录重命名为`PaddleSeg`
以下代码目录路径为`D:\projects\PaddleSeg` 为例。
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
根据Windows环境,下载相应版本的PaddlePaddle预测库,并解压到`D:\projects\`目录
| CUDA | GPU | 下载地址 |
|------|------|--------|
| 8.0 | Yes | [fluid_inference.zip](https://bj.bcebos.com/v1/paddleseg/fluid_inference_win.zip) |
| 9.0 | Yes | [fluid_inference_cuda90.zip](https://paddleseg.bj.bcebos.com/fluid_inference_cuda9_cudnn7.zip) |
解压后`D:\projects\fluid_inference`目录包含内容为:
```
fluid_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
|
└── version.txt # 版本和编译信息
```
**注意:** `CUDA90`版本解压后目录名称为`fluid_inference_cuda90`。
### Step3: 安装配置OpenCV
1. 在OpenCV官网下载适用于Windows平台的3.4.6版本, [下载地址](https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download)
2. 运行下载的可执行文件,将OpenCV解压至指定目录,如`D:\projects\opencv`
3. 配置环境变量,如下流程所示
- 我的电脑->属性->高级系统设置->环境变量
- 在系统变量中找到Path(如没有,自行创建),并双击编辑
- 新建,将opencv路径填入并保存,如`D:\projects\opencv\build\x64\vc14\bin`
### Step4: 使用Visual Studio 2019直接编译CMake
1. 打开Visual Studio 2019 Community,点击`继续但无需代码`
![step2](https://paddleseg.bj.bcebos.com/inference/vs2019_step1.png)
2. 点击: `文件`->`打开`->`CMake`
![step2.1](https://paddleseg.bj.bcebos.com/inference/vs2019_step2.png)
选择项目代码所在路径,并打开`CMakeList.txt`:
![step2.2](https://paddleseg.bj.bcebos.com/inference/vs2019_step3.png)
3. 点击:`项目`->`cpp_inference_demo的CMake设置`
![step3](https://paddleseg.bj.bcebos.com/inference/vs2019_step4.png)
4. 点击`浏览`,分别设置编译选项指定`CUDA`、`OpenCV`、`Paddle预测库`的路径
![step4](https://paddleseg.bj.bcebos.com/inference/vs2019_step5.png)
三个编译参数的含义说明如下:
| 参数名 | 含义 |
| ---- | ---- |
| CUDA_LIB | cuda的库路径 |
| OPENCV_DIR | OpenCV的安装路径, |
| PADDLE_DIR | Paddle预测库的路径 |
**设置完成后**, 点击上图中`保存并生成CMake缓存以加载变量`。
5. 点击`生成`->`全部生成`
![step6](https://paddleseg.bj.bcebos.com/inference/vs2019_step6.png)
### Step5: 预测及可视化
上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录:
```
cd /d D:\projects\PaddleSeg\inference\out\x64-Release
```
之后执行命令:
```
demo.exe --conf=/path/to/your/conf --input_dir=/path/to/your/input/data/directory
```
更详细说明请参考ReadMe文档: [预测和可视化部分](../ReadMe.md)
......@@ -6,7 +6,7 @@ include(ExternalProject)
message("${CMAKE_BUILD_TYPE}")
ExternalProject_Add(
yaml-cpp
ext-yaml-cpp
GIT_REPOSITORY https://github.com/jbeder/yaml-cpp.git
GIT_TAG e0e01d53c27ffee6c86153fa41e7f5e57d3e5c90
CMAKE_ARGS
......@@ -26,4 +26,4 @@ ExternalProject_Add(
# Disable install step
INSTALL_COMMAND ""
LOG_DOWNLOAD ON
)
\ No newline at end of file
)
......@@ -125,6 +125,10 @@ namespace PaddleSolution {
int Predictor::native_predict(const std::vector<std::string>& imgs)
{
if (imgs.size() == 0) {
LOG(ERROR) << "No image found";
return -1;
}
int config_batch_size = _model_config._batch_size;
int channels = _model_config._channels;
......@@ -205,6 +209,11 @@ namespace PaddleSolution {
int Predictor::analysis_predict(const std::vector<std::string>& imgs) {
if (imgs.size() == 0) {
LOG(ERROR) << "No image found";
return -1;
}
int config_batch_size = _model_config._batch_size;
int channels = _model_config._channels;
int eval_width = _model_config._resize[0];
......
......@@ -42,7 +42,7 @@ namespace PaddleSolution {
for (int c = 0; c < channels; ++c) {
int top_index = (c * rh + h) * rw + w;
float pixel = static_cast<float>(ptr[im_index++]);
pixel = (pixel - pmean[c]) / pscale[c];
pixel = (pixel / 255 - pmean[c]) / pscale[c];
data[top_index] = pixel;
}
}
......
......@@ -28,7 +28,6 @@ namespace PaddleSolution {
_channels = 0;
_use_gpu = 0;
_batch_size = 1;
_model_name.clear();
_model_file_name.clear();
_model_path.clear();
_param_file_name.clear();
......@@ -57,7 +56,7 @@ namespace PaddleSolution {
}
bool load_config(const std::string& conf_file) {
reset();
YAML::Node config = YAML::LoadFile(conf_file);
......@@ -79,8 +78,6 @@ namespace PaddleSolution {
_img_type = config["DEPLOY"]["IMAGE_TYPE"].as<std::string>();
// 5. get class number
_class_num = config["DEPLOY"]["NUM_CLASSES"].as<int>();
// 6. get model_name
_model_name = config["DEPLOY"]["MODEL_NAME"].as<std::string>();
// 7. set model path
_model_path = config["DEPLOY"]["MODEL_PATH"].as<std::string>();
// 8. get model file_name
......@@ -101,7 +98,7 @@ namespace PaddleSolution {
}
void debug() const {
std::cout << "EVAL_CROP_SIZE: (" << _resize[0] << ", " << _resize[1] << ")" << std::endl;
std::cout << "MEAN: [";
......@@ -129,7 +126,6 @@ namespace PaddleSolution {
std::cout << "DEPLOY.NUM_CLASSES: " << _class_num << std::endl;
std::cout << "DEPLOY.CHANNELS: " << _channels << std::endl;
std::cout << "DEPLOY.MODEL_PATH: " << _model_path << std::endl;
std::cout << "DEPLOY.MODEL_NAME: " << _model_name << std::endl;
std::cout << "DEPLOY.MODEL_FILENAME: " << _model_file_name << std::endl;
std::cout << "DEPLOY.PARAMS_FILENAME: " << _param_file_name << std::endl;
std::cout << "DEPLOY.PRE_PROCESSOR: " << _pre_processor << std::endl;
......@@ -152,8 +148,6 @@ namespace PaddleSolution {
int _channels;
// DEPLOY.MODEL_PATH
std::string _model_path;
// DEPLOY.MODEL_NAME
std::string _model_name;
// DEPLOY.MODEL_FILENAME
std::string _model_file_name;
// DEPLOY.PARAMS_FILENAME
......
......@@ -3,7 +3,13 @@
#include <iostream>
#include <vector>
#include <string>
#ifdef _WIN32
#include <filesystem>
#else
#include <dirent.h>
#include <sys/types.h>
#endif
namespace PaddleSolution {
namespace utils {
......@@ -14,7 +20,31 @@ namespace PaddleSolution {
#endif
return dir + seperator + path;
}
#ifndef _WIN32
// scan a directory and get all files with input extensions
inline std::vector<std::string> get_directory_images(const std::string& path, const std::string& exts)
{
std::vector<std::string> imgs;
struct dirent *entry;
DIR *dir = opendir(path.c_str());
if (dir == NULL) {
closedir(dir);
return imgs;
}
while ((entry = readdir(dir)) != NULL) {
std::string item = entry->d_name;
auto ext = strrchr(entry->d_name, '.');
if (!ext || std::string(ext) == "." || std::string(ext) == "..") {
continue;
}
if (exts.find(ext) != std::string::npos) {
imgs.push_back(path_join(path, entry->d_name));
}
}
return imgs;
}
#else
// scan a directory and get all files with input extensions
inline std::vector<std::string> get_directory_images(const std::string& path, const std::string& exts)
{
......@@ -28,5 +58,6 @@ namespace PaddleSolution {
}
return imgs;
}
#endif
}
}
......@@ -34,6 +34,7 @@ def init_global_variable():
global list_wrong #文件名格式错误列表
global imread_failed #图片读取失败列表, 二元列表
global label_wrong # 标注图片出错列表
global label_gray_wrong # 标注图非灰度图列表
png_format_right_num = 0
png_format_wrong_num = 0
......@@ -49,6 +50,7 @@ def init_global_variable():
list_wrong = []
imread_failed = []
label_wrong = []
label_gray_wrong = []
def parse_args():
parser = argparse.ArgumentParser(description='PaddleSeg check')
......@@ -68,10 +70,13 @@ def correct_print(str):
return "".join(["\nPASS ", str])
def cv2_imread(file_path, flag=cv2.IMREAD_COLOR):
# resolve cv2.imread open Chinese file path issues on Windows Platform.
"""
解决 cv2.imread 在window平台打开中文路径的问题.
"""
return cv2.imdecode(np.fromfile(file_path, dtype=np.uint8), flag)
def get_image_max_height_width(img):
"""获取图片最大宽和高"""
global max_width, max_height
img_shape = img.shape
height, width = img_shape[0], img_shape[1]
......@@ -79,6 +84,7 @@ def get_image_max_height_width(img):
max_width = max(width, max_width)
def get_image_min_max_aspectratio(img):
"""计算图片最大宽高比"""
global min_aspectratio, max_aspectratio
img_shape = img.shape
height, width = img_shape[0], img_shape[1]
......@@ -87,11 +93,19 @@ def get_image_min_max_aspectratio(img):
return min_aspectratio, max_aspectratio
def get_image_dim(img):
"""获取图像的维度"""
"""获取图像的通道数"""
img_shape = img.shape
if img_shape[-1] not in img_dim:
img_dim.append(img_shape[-1])
def is_label_gray(grt):
"""判断标签是否为灰度图"""
grt_shape = grt.shape
if len(grt_shape) == 2:
return True
else:
return False
def image_label_shape_check(img, grt):
"""
验证图像和标注的大小是否匹配
......@@ -110,17 +124,15 @@ def image_label_shape_check(img, grt):
def ground_truth_check(grt, grt_path):
"""
验证标注是否重零开始,标注值为0,1,...,num_classes-1, ingnore_idx
验证标注图像的格式
返回标注的像素数
检查图像是否都是ignore_index
统计标注图类别和像素数
params:
grt: 标注图
grt_path: 标注图路径
return:
png_format: 返回是否是png格式图片
label_correct: 返回标注是否是正确的
label_pixel_num: 返回标注的像素数
unique: 返回标注类别
counts: 返回标注的像素数
"""
if imghdr.what(grt_path) == "png":
png_format = True
......@@ -135,7 +147,7 @@ def sum_gt_check(png_format, grt_classes, num_of_each_class):
"""
统计所有标注图上的格式、类别和每个类别的像素数
params:
png_format: 返回是否是png格式图片
png_format: 是否是png格式图片
grt_classes: 标注类别
num_of_each_class: 各个类别的像素数目
"""
......@@ -188,7 +200,7 @@ def gt_check():
total_nc = sorted(zip(total_grt_classes, total_num_of_each_class))
logger.info("\nDoing label pixel statistics...\nTotal label calsses "
logger.info("\nDoing label pixel statistics...\nTotal label classes "
"and their corresponding numbers:\n{} ".format(total_nc))
if len(label_wrong) == 0 and not total_nc[0][0]:
......@@ -213,7 +225,7 @@ def eval_crop_size_check(max_height, max_width, min_aspectratio, max_aspectratio
"""
if cfg.AUG.AUG_METHOD == "stepscaling":
if max_width <= cfg.EVAL_CROP_SIZE[0] or max_height <= cfg.EVAL_CROP_SIZE[1]:
if max_width <= cfg.EVAL_CROP_SIZE[0] and max_height <= cfg.EVAL_CROP_SIZE[1]:
logger.info(correct_print("EVAL_CROP_SIZE check"))
else:
logger.info(error_print("EVAL_CROP_SIZE check"))
......@@ -322,6 +334,17 @@ def imread_check():
for i in imread_failed:
logger.debug(i)
def label_gray_check():
if len(label_gray_wrong) == 0:
logger.info(correct_print("label gray check"))
logger.info("All label images are gray")
else:
logger.info(error_print("label gray check"))
logger.info("{} label images are not gray\nLabel pixel statistics may "
"be insignificant".format(len(label_gray_wrong)))
for i in label_gray_wrong:
logger.debug(i)
def check_train_dataset():
......@@ -340,11 +363,15 @@ def check_train_dataset():
grt_path = os.path.join(cfg.DATASET.DATA_DIR, grt_name)
try:
img = cv2_imread(img_path, cv2.IMREAD_UNCHANGED)
grt = cv2_imread(grt_path, cv2.IMREAD_GRAYSCALE)
grt = cv2_imread(grt_path, cv2.IMREAD_UNCHANGED)
except Exception as e:
imread_failed.append((line, str(e)))
continue
is_gray = is_label_gray(grt)
if not is_gray:
label_gray_wrong.append(line)
grt = cv2.cvtColor(grt, cv2.COLOR_BGR2GRAY)
get_image_dim(img)
is_equal_img_grt_shape = image_label_shape_check(img, grt)
if not is_equal_img_grt_shape:
......@@ -359,6 +386,7 @@ def check_train_dataset():
file_list_check(list_file)
imread_check()
label_gray_check()
gt_check()
image_type_check(img_dim)
shape_check()
......@@ -383,9 +411,14 @@ def check_val_dataset():
grt_path = os.path.join(cfg.DATASET.DATA_DIR, grt_name)
try:
img = cv2_imread(img_path, cv2.IMREAD_UNCHANGED)
grt = cv2_imread(grt_path, cv2.IMREAD_GRAYSCALE)
grt = cv2_imread(grt_path, cv2.IMREAD_UNCHANGED)
except Exception as e:
imread_failed.append((line, e.message))
is_gray = is_label_gray(grt)
if not is_gray:
label_gray_wrong.append(line)
grt = cv2.cvtColor(grt, cv2.COLOR_BGR2GRAY)
get_image_max_height_width(img)
get_image_min_max_aspectratio(img)
get_image_dim(img)
......@@ -401,6 +434,7 @@ def check_val_dataset():
file_list_check(list_file)
imread_check()
label_gray_check()
gt_check()
image_type_check(img_dim)
shape_check()
......@@ -430,10 +464,15 @@ def check_test_dataset():
grt_path = os.path.join(cfg.DATASET.DATA_DIR, grt_name)
try:
img = cv2_imread(img_path, cv2.IMREAD_UNCHANGED)
grt = cv2_imread(grt_path, cv2.IMREAD_GRAYSCALE)
grt = cv2_imread(grt_path, cv2.IMREAD_UNCHANGED)
except Exception as e:
imread_failed.append((line, e.message))
continue
is_gray = is_label_gray(grt)
if not is_gray:
label_gray_wrong.append(line)
grt = cv2.cvtColor(grt, cv2.COLOR_BGR2GRAY)
is_equal_img_grt_shape = image_label_shape_check(img, grt)
if not is_equal_img_grt_shape:
shape_unequal_image.append(line)
......@@ -452,6 +491,8 @@ def check_test_dataset():
file_list_check(list_file)
imread_check()
if has_label:
label_gray_check()
if has_label:
gt_check()
image_type_check(img_dim)
......
......@@ -102,7 +102,7 @@ def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, **kwargs):
places = fluid.cuda_places() if use_gpu else fluid.cpu_places()
place = places[0]
dev_count = len(places)
print("Device count = {}".format(dev_count))
print("#Device count: {}".format(dev_count))
exe = fluid.Executor(place)
exe.run(startup_prog)
......
......@@ -106,19 +106,21 @@ class SegDataset(object):
def batch(self, reader, batch_size, is_test=False, drop_last=False):
def batch_reader(is_test=False, drop_last=drop_last):
if is_test:
imgs, img_names, valid_shapes, org_shapes = [], [], [], []
for img, img_name, valid_shape, org_shape in reader():
imgs, grts, img_names, valid_shapes, org_shapes = [], [], [], [], []
for img, grt, img_name, valid_shape, org_shape in reader():
imgs.append(img)
grts.append(grt)
img_names.append(img_name)
valid_shapes.append(valid_shape)
org_shapes.append(org_shape)
if len(imgs) == batch_size:
yield np.array(imgs), img_names, np.array(
valid_shapes), np.array(org_shapes)
imgs, img_names, valid_shapes, org_shapes = [], [], [], []
yield np.array(imgs), np.array(
grts), img_names, np.array(valid_shapes), np.array(
org_shapes)
imgs, grts, img_names, valid_shapes, org_shapes = [], [], [], [], []
if not drop_last and len(imgs) > 0:
yield np.array(imgs), img_names, np.array(
yield np.array(imgs), np.array(grts), img_names, np.array(
valid_shapes), np.array(org_shapes)
else:
imgs, labs, ignore = [], [], []
......@@ -146,93 +148,64 @@ class SegDataset(object):
# reserver alpha channel
cv2_imread_flag = cv2.IMREAD_UNCHANGED
if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL:
parts = line.strip().split(cfg.DATASET.SEPARATOR)
if len(parts) != 2:
parts = line.strip().split(cfg.DATASET.SEPARATOR)
if len(parts) != 2:
if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL:
raise Exception("File list format incorrect! It should be"
" image_name{}label_name\\n".format(
cfg.DATASET.SEPARATOR))
img_name, grt_name = parts[0], None
else:
img_name, grt_name = parts[0], parts[1]
img_path = os.path.join(src_dir, img_name)
grt_path = os.path.join(src_dir, grt_name)
img = cv2_imread(img_path, cv2_imread_flag)
img_path = os.path.join(src_dir, img_name)
img = cv2_imread(img_path, cv2_imread_flag)
if grt_name is not None:
grt_path = os.path.join(src_dir, grt_name)
grt = cv2_imread(grt_path, cv2.IMREAD_GRAYSCALE)
else:
grt = None
if img is None or grt is None:
raise Exception(
"Empty image, src_dir: {}, img: {} & lab: {}".format(
src_dir, img_path, grt_path))
if img is None:
raise Exception(
"Empty image, src_dir: {}, img: {} & lab: {}".format(
src_dir, img_path, grt_path))
img_height = img.shape[0]
img_width = img.shape[1]
img_height = img.shape[0]
img_width = img.shape[1]
if grt is not None:
grt_height = grt.shape[0]
grt_width = grt.shape[1]
if img_height != grt_height or img_width != grt_width:
raise Exception(
"source img and label img must has the same size")
if len(img.shape) < 3:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img_channels = img.shape[2]
if img_channels < 3:
raise Exception(
"PaddleSeg only supports gray, rgb or rgba image")
if img_channels != cfg.DATASET.DATA_DIM:
raise Exception(
"Input image channel({}) is not match cfg.DATASET.DATA_DIM({}), img_name={}"
.format(img_channels, cfg.DATASET.DATADIM, img_name))
if img_channels != len(cfg.MEAN):
raise Exception(
"img name {}, img chns {} mean size {}, size unequal".
format(img_name, img_channels, len(cfg.MEAN)))
if img_channels != len(cfg.STD):
raise Exception(
"img name {}, img chns {} std size {}, size unequal".format(
img_name, img_channels, len(cfg.STD)))
# visualization mode
elif mode == ModelPhase.VISUAL:
if cfg.DATASET.SEPARATOR in line:
parts = line.strip().split(cfg.DATASET.SEPARATOR)
img_name = parts[0]
else:
img_name = line.strip()
img_path = os.path.join(src_dir, img_name)
img = cv2_imread(img_path, cv2_imread_flag)
if img is None:
raise Exception("empty image, src_dir:{}, img: {}".format(
src_dir, img_name))
# Convert grayscale image to BGR 3 channel image
if len(img.shape) < 3:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img_height = img.shape[0]
img_width = img.shape[1]
img_channels = img.shape[2]
if img_channels < 3:
raise Exception("this repo only recept gray, rgb or rgba image")
if img_channels != cfg.DATASET.DATA_DIM:
raise Exception("data dim must equal to image channels")
if img_channels != len(cfg.MEAN):
raise Exception(
"img name {}, img chns {} mean size {}, size unequal".
format(img_name, img_channels, len(cfg.MEAN)))
if img_channels != len(cfg.STD):
else:
if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL:
raise Exception(
"img name {}, img chns {} std size {}, size unequal".format(
img_name, img_channels, len(cfg.STD)))
"Empty image, src_dir: {}, img: {} & lab: {}".format(
src_dir, img_path, grt_path))
grt = None
grt_name = None
else:
raise ValueError("mode error: {}".format(mode))
if len(img.shape) < 3:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img_channels = img.shape[2]
if img_channels < 3:
raise Exception("PaddleSeg only supports gray, rgb or rgba image")
if img_channels != cfg.DATASET.DATA_DIM:
raise Exception(
"Input image channel({}) is not match cfg.DATASET.DATA_DIM({}), img_name={}"
.format(img_channels, cfg.DATASET.DATADIM, img_name))
if img_channels != len(cfg.MEAN):
raise Exception(
"img name {}, img chns {} mean size {}, size unequal".format(
img_name, img_channels, len(cfg.MEAN)))
if img_channels != len(cfg.STD):
raise Exception(
"img name {}, img chns {} std size {}, size unequal".format(
img_name, img_channels, len(cfg.STD)))
return img, grt, img_name, grt_name
......@@ -288,17 +261,18 @@ class SegDataset(object):
SATURATION_JITTER_RATIO,
contrast_jitter_ratio=cfg.AUG.RICH_CROP.
CONTRAST_JITTER_RATIO)
if cfg.AUG.RICH_CROP.FLIP:
if cfg.AUG.RICH_CROP.FLIP_RATIO <= 0:
n = 0
elif cfg.AUG.RICH_CROP.FLIP_RATIO >= 1:
n = 1
else:
n = int(1.0 / cfg.AUG.RICH_CROP.FLIP_RATIO)
if n > 0:
if np.random.randint(0, n) == 0:
img = img[::-1, :, :]
grt = grt[::-1, :]
if cfg.AUG.FLIP:
if cfg.AUG.FLIP_RATIO <= 0:
n = 0
elif cfg.AUG.FLIP_RATIO >= 1:
n = 1
else:
n = int(1.0 / cfg.AUG.FLIP_RATIO)
if n > 0:
if np.random.randint(0, n) == 0:
img = img[::-1, :, :]
grt = grt[::-1, :]
if cfg.AUG.MIRROR:
if np.random.randint(0, 2) == 1:
......@@ -329,4 +303,4 @@ class SegDataset(object):
elif ModelPhase.is_eval(mode):
return (img, grt, ignore)
elif ModelPhase.is_visual(mode):
return (img, img_name, valid_shape, org_shape)
return (img, grt, img_name, valid_shape, org_shape)
......@@ -152,15 +152,15 @@ def load_checkpoint(exe, program):
Load checkpoiont from pretrained model directory for resume training
"""
print('Resume model training from:', cfg.TRAIN.PRETRAINED_MODEL)
if not os.path.exists(cfg.TRAIN.PRETRAINED_MODEL):
print('Resume model training from:', cfg.TRAIN.RESUME_MODEL_DIR)
if not os.path.exists(cfg.TRAIN.RESUME_MODEL_DIR):
raise ValueError("TRAIN.PRETRAIN_MODEL {} not exist!".format(
cfg.TRAIN.PRETRAINED_MODEL))
cfg.TRAIN.RESUME_MODEL_DIR))
fluid.io.load_persistables(
exe, cfg.TRAIN.PRETRAINED_MODEL, main_program=program)
exe, cfg.TRAIN.RESUME_MODEL_DIR, main_program=program)
model_path = cfg.TRAIN.PRETRAINED_MODEL
model_path = cfg.TRAIN.RESUME_MODEL_DIR
# Check is path ended by path spearator
if model_path[-1] == os.sep:
model_path = model_path[0:-1]
......@@ -216,7 +216,7 @@ def train(cfg):
place = places[0]
# Get number of GPU
dev_count = len(places)
print("#GPU-Devices: {}".format(dev_count))
print("#Device count: {}".format(dev_count))
# Make sure BATCH_SIZE can divided by GPU cards
assert cfg.BATCH_SIZE % dev_count == 0, (
......@@ -255,29 +255,25 @@ def train(cfg):
# Resume training
begin_epoch = cfg.SOLVER.BEGIN_EPOCH
if cfg.TRAIN.RESUME:
if cfg.TRAIN.RESUME_MODEL_DIR:
begin_epoch = load_checkpoint(exe, train_prog)
# Load pretrained model
elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL):
print('Pretrained model dir:', cfg.TRAIN.PRETRAINED_MODEL)
elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
print('Pretrained model dir:', cfg.TRAIN.PRETRAINED_MODEL_DIR)
load_vars = []
load_fail_vars = []
def var_shape_matched(var, shape):
"""
Check whehter persitable variable shape is match with current network
"""
var_exist = os.path.exists(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL, var.name))
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
if var_exist:
var_shape = parse_shape_from_file(
os.path.join(cfg.TRAIN.PRETRAINED_MODEL, var.name))
if var_shape == shape:
return True
else:
print(
"Variable[{}] shape does not match current network, skip"
" to load it.".format(var.name))
return False
os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
return var_shape == shape
return False
for x in train_prog.list_vars():
if isinstance(x, fluid.framework.Parameter):
......@@ -285,16 +281,25 @@ def train(cfg):
x.name).get_tensor().shape())
if var_shape_matched(x, shape):
load_vars.append(x)
else:
load_fail_vars.append(x)
if cfg.MODEL.FP16:
# If open FP16 training mode, load FP16 var separate
load_fp16_vars(exe, cfg.TRAIN.PRETRAINED_MODEL, train_prog)
load_fp16_vars(exe, cfg.TRAIN.PRETRAINED_MODEL_DIR, train_prog)
else:
fluid.io.load_vars(
exe, dirname=cfg.TRAIN.PRETRAINED_MODEL, vars=load_vars)
print("Pretrained model loaded successfully!")
exe, dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR, vars=load_vars)
for var in load_vars:
print("Parameter[{}] loaded sucessfully!".format(var.name))
for var in load_fail_vars:
print("Parameter[{}] shape does not match current network, skip"
" to load it.".format(var.name))
print("{}/{} pretrained parameters loaded successfully!".format(
len(load_vars),
len(load_vars) + len(load_fail_vars)))
else:
print('Pretrained model dir {} not exists, training from scratch...'.
format(cfg.TRAIN.PRETRAINED_MODEL))
format(cfg.TRAIN.PRETRAINED_MODEL_DIR))
fetch_list = [avg_loss.name, lr.name]
if args.debug:
......@@ -311,9 +316,6 @@ def train(cfg):
exit(1)
from tb_paddle import SummaryWriter
if os.path.exists(args.tb_log_dir):
shutil.rmtree(args.tb_log_dir)
log_writer = SummaryWriter(args.tb_log_dir)
global_step = 0
......
......@@ -98,6 +98,16 @@ class SegConfig(dict):
'DATASET.IMAGE_TYPE config error, only support `rgb`, `gray` and `rgba`'
)
if not self.TRAIN_CROP_SIZE:
raise ValueError(
'TRAIN_CROP_SIZE is empty! Please set a pair of values in format (width, height)'
)
if not self.EVAL_CROP_SIZE:
raise ValueError(
'EVAL_CROP_SIZE is empty! Please set a pair of values in format (width, height)'
)
if reset_dataset:
# Ensure file list is use UTF-8 encoding
train_sets = codecs.open(self.DATASET.TRAIN_FILE_LIST, 'r',
......
......@@ -69,6 +69,10 @@ cfg.DATASET.IGNORE_INDEX = 255
########################### 数据增强配置 ######################################
# 图像镜像左右翻转
cfg.AUG.MIRROR = True
# 图像上下翻转开关,True/False
cfg.AUG.FLIP = False
# 图像启动上下翻转的概率,0-1
cfg.AUG.FLIP_RATIO = 0.5
# 图像resize的固定尺寸(宽,高),非负
cfg.AUG.FIX_RESIZE_SIZE = tuple()
# 图像resize的方式有三种:
......@@ -116,9 +120,9 @@ cfg.AUG.RICH_CROP.FLIP_RATIO = 0.2
# 模型保存路径
cfg.TRAIN.MODEL_SAVE_DIR = ''
# 预训练模型路径
cfg.TRAIN.PRETRAINED_MODEL = ''
cfg.TRAIN.PRETRAINED_MODEL_DIR = ''
# 是否resume,继续训练
cfg.TRAIN.RESUME = False
cfg.TRAIN.RESUME_MODEL_DIR = ''
# 是否使用多卡间同步BatchNorm均值和方差
cfg.TRAIN.SYNC_BATCH_NORM = False
# 模型参数保存的epoch间隔数,可用来继续训练中断的模型
......
......@@ -171,7 +171,7 @@ def visualize(cfg,
fetch_list = [pred.name]
test_reader = dataset.batch(dataset.generator, batch_size=1, is_test=True)
img_cnt = 0
for imgs, img_names, valid_shapes, org_shapes in test_reader:
for imgs, grts, img_names, valid_shapes, org_shapes in test_reader:
pred_shape = (imgs.shape[2], imgs.shape[3])
pred, = exe.run(
program=test_prog,
......@@ -185,6 +185,7 @@ def visualize(cfg,
# Add more comments
res_map = np.squeeze(pred[i, :, :, :]).astype(np.uint8)
img_name = img_names[i]
grt = grts[i]
res_shape = (res_map.shape[0], res_map.shape[1])
if res_shape[0] != pred_shape[0] or res_shape[1] != pred_shape[1]:
res_map = cv2.resize(
......@@ -196,6 +197,12 @@ def visualize(cfg,
res_map, (org_shape[1], org_shape[0]),
interpolation=cv2.INTER_NEAREST)
if grt is not None:
grt = grt[0:valid_shape[0], 0:valid_shape[1]]
grt = cv2.resize(
grt, (org_shape[1], org_shape[0]),
interpolation=cv2.INTER_NEAREST)
png_fn = to_png_fn(img_names[i])
if also_save_raw_results:
raw_fn = os.path.join(raw_save_dir, png_fn)
......@@ -209,6 +216,8 @@ def visualize(cfg,
makedirs(dirname)
pred_mask = colorize(res_map, org_shapes[i], color_map)
if grt is not None:
grt = colorize(grt, org_shapes[i], color_map)
cv2.imwrite(vis_fn, pred_mask)
img_cnt += 1
......@@ -233,7 +242,13 @@ def visualize(cfg,
img,
epoch,
dataformats='HWC')
#TODO: add ground truth (label) images
#add ground truth (label) images
if grt is not None:
log_writer.add_image(
"Label/{}".format(img_names[i]),
grt[..., ::-1],
epoch,
dataformats='HWC')
# If in local_test mode, only visualize 5 images just for testing
# procedure
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
TEST_PATH = os.path.join(LOCAL_PATH, "..", "test")
sys.path.append(TEST_PATH)
from test_utils import download_file_and_uncompress
model_urls = {
# ImageNet Pretrained
"mobilnetv2-2-0_bn_imagenet":
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar",
"mobilnetv2-1-5_bn_imagenet":
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar",
"mobilnetv2-1-0_bn_imagenet":
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar",
"mobilnetv2-0-5_bn_imagenet":
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar",
"mobilnetv2-0-25_bn_imagenet":
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar",
"xception41_imagenet":
"https://paddleseg.bj.bcebos.com/models/Xception41_pretrained.tgz",
"xception65_imagenet":
"https://paddleseg.bj.bcebos.com/models/Xception65_pretrained.tgz",
# COCO pretrained
"deeplabv3p_mobilnetv2-1-0_bn_coco":
"https://bj.bcebos.com/v1/paddleseg/deeplabv3plus_coco_bn_init.tgz",
"deeplabv3p_xception65_bn_coco":
"https://paddleseg.bj.bcebos.com/models/xception65_coco.tgz",
"unet_bn_coco": "https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz",
# Cityscapes pretrained
"deeplabv3p_mobilenetv2-1-0_bn_cityscapes":
"https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz",
"deeplabv3p_xception65_gn_cityscapes":
"https://paddleseg.bj.bcebos.com/models/deeplabv3p_xception65_cityscapes.tgz",
"deeplabv3p_xception65_bn_cityscapes":
"https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz",
"unet_bn_coco": "https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz",
"icnet_bn_cityscapes":
"https://paddleseg.bj.bcebos.com/models/icnet6831.tar.gz"
}
if __name__ == "__main__":
if len(sys.argv) != 2:
print("usage:\n python download_model.py ${MODEL_NAME}")
exit(1)
model_name = sys.argv[1]
if not model_name in model_urls.keys():
print("Only support: \n {}".format("\n ".join(
list(model_urls.keys()))))
exit(1)
url = model_urls[model_name]
download_file_and_uncompress(
url=url,
savepath=LOCAL_PATH,
extrapath=LOCAL_PATH,
extraname=model_name)
print("Pretrained Model download success!")
......@@ -90,7 +90,7 @@ ln -s /usr/lib64/libcurl.so.4.3.0 /usr/lib64/libcurl.so
```bash
cd ~
wget -c https://paddleseg.bj.bcebos.com/serving%2Fpaddle_seg_serving_centos7.6_gpu_cuda9.2.tar.gz
wget -c --no-check-certificate https://paddleseg.bj.bcebos.com/serving/paddle_seg_serving_centos7.6_gpu_cuda9.2.tar.gz
tar xvfz PaddleSegServing.centos7.6_cuda9.2_gpu.tar.gz seg-serving
```
......@@ -98,7 +98,7 @@ tar xvfz PaddleSegServing.centos7.6_cuda9.2_gpu.tar.gz seg-serving
```bash
cd ~
wget -c https://paddleseg.bj.bcebos.com/serving%2Fpaddle_seg_serving_centos7.6_cpu.tar.gz
wget -c --no-check-certificate https://paddleseg.bj.bcebos.com/serving/paddle_seg_serving_centos7.6_cpu.tar.gz
tar xvfz PaddleSegServing.centos7.6_cuda9.2_gpu.tar.gz seg-serving
```
......
......@@ -23,7 +23,7 @@ ln -s /usr/lib/x86_64-linux-gnu/libcurl.so.4.4.0 /usr/lib/x86_64-linux-gnu/libcu
```bash
# 下载nccl相关的deb包
wget -c https://paddleseg.bj.bcebos.com/serving%2Fnccl-repo-ubuntu1604-2.4.8-ga-cuda9.2_1-1_amd64.deb
wget -c --no-check-certificate https://paddleseg.bj.bcebos.com/serving/nccl-repo-ubuntu1604-2.4.8-ga-cuda9.2_1-1_amd64.deb
sudo apt-key add /var/nccl-repo-2.4.8-ga-cuda9.2/7fa2af80.pub
# 安装deb包
sudo dpkg -i nccl-repo-ubuntu1604-2.4.8-ga-cuda9.2_1-1_amd64.deb
......@@ -47,7 +47,7 @@ sudo apt-get autoremove cmake
```bash
cd ~
wget -c https://paddleseg.bj.bcebos.com/serving%2Fpaddle_seg_serving_ubuntu16.07_gpu_cuda9.2.tar.gz
wget -c --no-check-certificate https://paddleseg.bj.bcebos.com/serving/paddle_seg_serving_ubuntu16.07_gpu_cuda9.2.tar.gz
tar xvfz PaddleSegServing.ubuntu16.07_cuda9.2_gpu.tar.gz seg-serving
```
......@@ -55,7 +55,7 @@ tar xvfz PaddleSegServing.ubuntu16.07_cuda9.2_gpu.tar.gz seg-serving
```bash
cd ~
wget -c https://paddleseg.bj.bcebos.com/serving%2Fpaddle_seg_serving_ubuntu16.07_cpu.tar.gz
wget -c --no-check-certificate https://paddleseg.bj.bcebos.com/serving%2Fpaddle_seg_serving_ubuntu16.07_cpu.tar.gz
tar xvfz PaddleSegServing.ubuntu16.07_cuda9.2_gpu.tar.gz seg-serving
```
......
#!/bin/bash
function abort(){
echo "Your change doesn't follow PaddleSeg's code style." 1>&2
echo "Please use pre-commit to check what is wrong." 1>&2
exit 1
}
trap 'abort' 0
set -e
cd $TRAVIS_BUILD_DIR
export PATH=/usr/bin:$PATH
pre-commit install
if ! pre-commit run -a ; then
git diff
exit 1
fi
trap : 0
#!/bin/bash
set -o errexit
base_path=$(cd `dirname $0`/../..; pwd)
cd $base_path
python dataset/download_pet.py
......@@ -10,18 +10,6 @@ AUG:
MIN_SCALE_FACTOR: 0.5 # for stepscaling
SCALE_STEP_SIZE: 0.25 # for stepscaling
MIRROR: True
RICH_CROP:
ENABLE: False
ASPECT_RATIO: 0.33
BLUR: True
BLUR_RATIO: 0.1
FLIP: True
FLIP_RATIO: 0.2
MAX_ROTATION: 15
MIN_AREA_RATIO: 0.5
BRIGHTNESS_JITTER_RATIO: 0.5
CONTRAST_JITTER_RATIO: 0.5
SATURATION_JITTER_RATIO: 0.5
BATCH_SIZE: 4
DATASET:
DATA_DIR: "./dataset/cityscapes/"
......@@ -46,8 +34,7 @@ TEST:
TEST_MODEL: "snapshots/cityscape_v5/final/"
TRAIN:
MODEL_SAVE_DIR: "snapshots/cityscape_v5/"
PRETRAINED_MODEL: "pretrain/deeplabv3plus_gn_init"
RESUME: False
PRETRAINED_MODEL_DIR: "pretrain/deeplabv3plus_gn_init"
SNAPSHOT_EPOCH: 10
SOLVER:
LR: 0.001
......
......@@ -12,18 +12,6 @@ AUG:
MIN_SCALE_FACTOR: 0.75 # for stepscaling
SCALE_STEP_SIZE: 0.25 # for stepscaling
MIRROR: True
RICH_CROP:
ENABLE: False
ASPECT_RATIO: 0.33
BLUR: True
BLUR_RATIO: 0.1
FLIP: True
FLIP_RATIO: 0.2
MAX_ROTATION: 15
MIN_AREA_RATIO: 0.5
BRIGHTNESS_JITTER_RATIO: 0.5
CONTRAST_JITTER_RATIO: 0.5
SATURATION_JITTER_RATIO: 0.5
BATCH_SIZE: 6
DATASET:
DATA_DIR: "./dataset/pet/"
......@@ -45,8 +33,7 @@ TEST:
TEST_MODEL: "./test/saved_model/unet_pet/final/"
TRAIN:
MODEL_SAVE_DIR: "./test/saved_models/unet_pet/"
PRETRAINED_MODEL: "./test/models/unet_coco/"
RESUME: False
PRETRAINED_MODEL_DIR: "./test/models/unet_coco/"
SNAPSHOT_EPOCH: 10
SOLVER:
NUM_EPOCHS: 500
......
......@@ -14,6 +14,7 @@
from test_utils import download_file_and_uncompress, train, eval, vis, export_model
import os
import argparse
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
DATASET_PATH = os.path.join(LOCAL_PATH, "..", "dataset")
......@@ -43,7 +44,17 @@ if __name__ == "__main__":
vis_dir = os.path.join(LOCAL_PATH, "visual", model_name)
saved_model = os.path.join(LOCAL_PATH, "saved_model", model_name)
devices = ['0']
parser = argparse.ArgumentParser(description="PaddleSeg loacl test")
parser.add_argument(
"--devices",
dest="devices",
help="GPU id of running. if more than one, use spacing to separate.",
nargs="+",
default=0,
type=int)
args = parser.parse_args()
devices = [str(x) for x in args.devices]
export_model(
flags=["--cfg", cfg],
......@@ -65,7 +76,7 @@ if __name__ == "__main__":
train(
flags=["--cfg", cfg, "--use_gpu", "--log_steps", "10"],
options=[
"SOLVER.NUM_EPOCHS", "1", "TRAIN.PRETRAINED_MODEL", test_model,
"SOLVER.NUM_EPOCHS", "1", "TRAIN.PRETRAINED_MODEL_DIR", test_model,
"TRAIN.MODEL_SAVE_DIR", saved_model
],
devices=devices)
......@@ -14,6 +14,7 @@
from test_utils import download_file_and_uncompress, train, eval, vis, export_model
import os
import argparse
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
DATASET_PATH = os.path.join(LOCAL_PATH, "..", "dataset")
......@@ -44,12 +45,22 @@ if __name__ == "__main__":
vis_dir = os.path.join(LOCAL_PATH, "visual", model_name)
saved_model = os.path.join(LOCAL_PATH, "saved_model", model_name)
devices = ['0']
parser = argparse.ArgumentParser(description="PaddleSeg loacl test")
parser.add_argument(
"--devices",
dest="devices",
help="GPU id of running. if more than one, use spacing to separate.",
nargs="+",
default=0,
type=int)
args = parser.parse_args()
devices = [str(x) for x in args.devices]
train(
flags=["--cfg", cfg, "--use_gpu", "--log_steps", "10"],
options=[
"SOLVER.NUM_EPOCHS", "1", "TRAIN.PRETRAINED_MODEL", test_model,
"SOLVER.NUM_EPOCHS", "1", "TRAIN.PRETRAINED_MODEL_DIR", test_model,
"TRAIN.MODEL_SAVE_DIR", saved_model, "DATASET.TRAIN_FILE_LIST",
os.path.join(DATASET_PATH, "mini_pet", "file_list",
"train_list.txt"), "DATASET.VAL_FILE_LIST",
......
......@@ -20,6 +20,7 @@ import sys
import tarfile
import zipfile
import platform
import functools
lasttime = time.time()
FLUSH_INTERVAL = 0.1
......@@ -67,7 +68,7 @@ def _download_file(url, savepath, print_progress):
if print_progress:
done = int(50 * dl / total_length)
progress("[%-50s] %.2f%%" %
('=' * done, float(dl / total_length * 100)))
('=' * done, float(100 * dl) / total_length))
if print_progress:
progress("[%-50s] %.2f%%" % ('=' * 50, 100), end=True)
......@@ -78,46 +79,53 @@ def _uncompress_file(filepath, extrapath, delete_file, print_progress):
if filepath.endswith("zip"):
handler = _uncompress_file_zip
else:
elif filepath.endswith("tgz"):
handler = _uncompress_file_tar
else:
handler = functools.partial(_uncompress_file_tar, mode="r")
for total_num, index in handler(filepath, extrapath):
for total_num, index, rootpath in handler(filepath, extrapath):
if print_progress:
done = int(50 * float(index) / total_num)
progress(
"[%-50s] %.2f%%" % ('=' * done, float(index / total_num * 100)))
"[%-50s] %.2f%%" % ('=' * done, float(100 * index) / total_num))
if print_progress:
progress("[%-50s] %.2f%%" % ('=' * 50, 100), end=True)
if delete_file:
os.remove(filepath)
return rootpath
def _uncompress_file_zip(filepath, extrapath):
files = zipfile.ZipFile(filepath, 'r')
filelist = files.namelist()
rootpath = filelist[0]
total_num = len(filelist)
for index, file in enumerate(filelist):
files.extract(file, extrapath)
yield total_num, index
yield total_num, index, rootpath
files.close()
yield total_num, index
yield total_num, index, rootpath
def _uncompress_file_tar(filepath, extrapath):
files = tarfile.open(filepath, "r:gz")
def _uncompress_file_tar(filepath, extrapath, mode="r:gz"):
files = tarfile.open(filepath, mode)
filelist = files.getnames()
total_num = len(filelist)
rootpath = filelist[0]
for index, file in enumerate(filelist):
files.extract(file, extrapath)
yield total_num, index
yield total_num, index, rootpath
files.close()
yield total_num, index
yield total_num, index, rootpath
def download_file_and_uncompress(url,
savepath=None,
extrapath=None,
extraname=None,
print_progress=True,
cover=False,
delete_file=True):
......@@ -129,19 +137,27 @@ def download_file_and_uncompress(url,
savename = url.split("/")[-1]
savepath = os.path.join(savepath, savename)
extraname = ".".join(savename.split(".")[:-1])
extraname = os.path.join(extrapath, extraname)
savename = ".".join(savename.split(".")[:-1])
savename = os.path.join(extrapath, savename)
extraname = savename if extraname is None else os.path.join(
extrapath, extraname)
if cover:
if os.path.exists(savepath):
shutil.rmtree(savepath)
if os.path.exists(savename):
shutil.rmtree(savename)
if os.path.exists(extraname):
shutil.rmtree(extraname)
if not os.path.exists(extraname):
if not os.path.exists(savepath):
_download_file(url, savepath, print_progress)
_uncompress_file(savepath, extrapath, delete_file, print_progress)
if not os.path.exists(savename):
if not os.path.exists(savepath):
_download_file(url, savepath, print_progress)
savename = _uncompress_file(savepath, extrapath, delete_file,
print_progress)
savename = os.path.join(extrapath, savename)
shutil.move(savename, extraname)
def _pdseg(command, flags, options, devices):
......
# 关于本教程
* 本教程旨在介绍如何通过使用PaddleSeg提供的 ***`DeeplabV3+/Xception65/BatchNorm`*** 预训练模型在自定义数据集上进行训练。除了该配置之外,DeeplabV3+还支持以下不同[模型组合](#模型组合)的预训练模型,如果需要使用对应模型作为预训练模型,将下述内容中的Xception Backbone中的内容进行替换即可
* 在阅读本教程前,请确保您已经了解过PaddleSeg的[快速入门](../README.md#快速入门)[基础功能](../README.md#基础功能)等章节,以便对PaddleSeg有一定的了解
* 本教程的所有命令都基于PaddleSeg主目录进行执行
## 一. 准备待训练数据
我们提前准备好了一份数据集,通过以下代码进行下载
```shell
python dataset/download_pet.py
```
## 二. 下载预训练模型
关于PaddleSeg支持的所有预训练模型的列表,我们可以从[模型组合](#模型组合)中查看我们所需模型的名字和配置
接着下载对应的预训练模型
```shell
python pretrained_model/download_model.py deeplabv3p_xception65_bn_cityscapes
```
## 三. 准备配置
接着我们需要确定相关配置,从本教程的角度,配置分为三部分:
* 数据集
* 训练集主目录
* 训练集文件列表
* 测试集文件列表
* 评估集文件列表
* 预训练模型
* 预训练模型名称
* 预训练模型的backbone网络
* 预训练模型的Normalization类型
* 预训练模型路径
* 其他
* 学习率
* Batch大小
* ...
在三者中,预训练模型的配置尤为重要,如果模型或者BACKBONE配置错误,会导致预训练的参数没有加载,进而影响收敛速度。预训练模型相关的配置如第二步所展示。
数据集的配置和数据路径有关,在本教程中,数据存放在`dataset/mini_pet`
其他配置则根据数据集和机器环境的情况进行调节,最终我们保存一个如下内容的yaml配置文件,存放路径为`configs/test_pet.yaml`
```yaml
# 数据集配置
DATASET:
DATA_DIR: "./dataset/mini_pet/"
NUM_CLASSES: 3
TEST_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
TRAIN_FILE_LIST: "./dataset/mini_pet/file_list/train_list.txt"
VAL_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt"
VIS_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
# 预训练模型配置
MODEL:
MODEL_NAME: "deeplabv3p"
DEFAULT_NORM_TYPE: "bn"
DEEPLAB:
BACKBONE: "xception_65"
TRAIN:
PRETRAINED_MODEL_DIR: "./pretrained_model/deeplabv3p_xception65_bn_pet/"
# 其他配置
TRAIN_CROP_SIZE: (512, 512)
EVAL_CROP_SIZE: (512, 512)
AUG:
AUG_METHOD: "unpadding"
FIX_RESIZE_SIZE: (512, 512)
BATCH_SIZE: 4
TRAIN:
MODEL_SAVE_DIR: "./finetune/deeplabv3p_xception65_bn_pet/"
SNAPSHOT_EPOCH: 10
TEST:
TEST_MODEL: "./finetune/deeplabv3p_xception65_bn_pet/final"
SOLVER:
NUM_EPOCHS: 500
LR: 0.005
LR_POLICY: "poly"
OPTIMIZER: "adam"
```
## 四. 配置/数据校验
在开始训练和评估之前,我们还需要对配置和数据进行一次校验,确保数据和配置是正确的。使用下述命令启动校验流程
```shell
python pdseg/check.py --cfg ./configs/test_pet.yaml
```
## 五. 开始训练
校验通过后,使用下述命令启动训练
```shell
python pdseg/train.py --use_gpu --cfg ./configs/test_pet.yaml
```
## 六. 进行评估
模型训练完成,使用下述命令启动评估
```shell
python pdseg/eval.py --use_gpu --cfg ./configs/test_pet.yaml
```
## 模型组合
|预训练模型名称|BackBone|Norm|数据集|配置|
|-|-|-|-|-|
|mobilenetv2-2-0_bn_imagenet|-|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 2.0 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|mobilenetv2-1-5_bn_imagenet|-|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.5 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|mobilenetv2-1-0_bn_imagenet|-|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|mobilenetv2-0-5_bn_imagenet|-|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 0.5 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|mobilenetv2-0-25_bn_imagenet|-|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 0.25 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|xception41_imagenet|-|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_41 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|xception65_imagenet|-|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|deeplabv3p_mobilenetv2-1-0_bn_coco|MobileNet V2|bn|COCO|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEEPLAB.ENCODER_WITH_ASPP: False <br> MODEL.DEEPLAB.ENABLE_DECODER: False <br> MODEL.DEFAULT_NORM_TYPE: bn|
|deeplabv3p_xception65_bn_coco|Xception|bn|COCO|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn |
|deeplabv3p_mobilenetv2-1-0_bn_cityscapes|MobileNet V2|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenet <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEEPLAB.ENCODER_WITH_ASPP: False <br> MODEL.DEEPLAB.ENABLE_DECODER: False <br> MODEL.DEFAULT_NORM_TYPE: bn|
|deeplabv3p_xception65_gn_cityscapes|Xception|gn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: gn|
|**deeplabv3p_xception65_bn_cityscapes**|Xception|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn|
# 关于本教程
* 本教程旨在介绍如何通过使用PaddleSeg提供的 ***`ICNet`*** 预训练模型在自定义数据集上进行训练
* 在阅读本教程前,请确保您已经了解过PaddleSeg的[快速入门](../README.md#快速入门)[基础功能](../README.md#基础功能)等章节,以便对PaddleSeg有一定的了解
* 本教程的所有命令都基于PaddleSeg主目录进行执行
## 一. 准备待训练数据
我们提前准备好了一份数据集,通过以下代码进行下载
```shell
python dataset/download_pet.py
```
## 二. 下载预训练模型
关于PaddleSeg支持的所有预训练模型的列表,我们可以从[模型组合](#模型组合)中查看我们所需模型的名字和配置。
接着下载对应的预训练模型
```shell
python pretrained_model/download_model.py icnet_bn_cityscapes
```
## 三. 准备配置
接着我们需要确定相关配置,从本教程的角度,配置分为三部分:
* 数据集
* 训练集主目录
* 训练集文件列表
* 测试集文件列表
* 评估集文件列表
* 预训练模型
* 预训练模型名称
* 预训练模型的backbone网络
* 预训练模型的Normalization类型
* 预训练模型路径
* 优化策略
* 学习率
* Batch Size
* ...
在三者中,预训练模型的配置尤为重要,如果模型或者BACKBONE配置错误,会导致预训练的参数没有加载,进而影响收敛速度。预训练模型相关的配置如第二步所示。
数据集的配置和数据路径有关,在本教程中,数据存放在`dataset/mini_pet`
其他配置则根据数据集和机器环境的情况进行调节,最终我们保存一个如下内容的yaml配置文件,存放路径为`configs/test_pet.yaml`
```yaml
# 数据集配置
DATASET:
DATA_DIR: "./dataset/mini_pet/"
NUM_CLASSES: 3
TEST_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
TRAIN_FILE_LIST: "./dataset/mini_pet/file_list/train_list.txt"
VAL_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt"
VIS_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
# 预训练模型配置
MODEL:
MODEL_NAME: "icnet"
DEFAULT_NORM_TYPE: "bn"
MULTI_LOSS_WEIGHT: "[1.0, 0.4, 0.16]"
TRAIN:
PRETRAINED_MODEL_DIR: "./pretrained_model/icnet_bn_cityscapes/"
# 其他配置
TRAIN_CROP_SIZE: (512, 512)
EVAL_CROP_SIZE: (512, 512)
AUG:
AUG_METHOD: "unpadding"
FIX_RESIZE_SIZE: (512, 512)
BATCH_SIZE: 4
TRAIN:
MODEL_SAVE_DIR: "./saved_model/icnet_pet/"
SNAPSHOT_EPOCH: 10
TEST:
TEST_MODEL: "./saved_model/icnet_pet/final"
SOLVER:
NUM_EPOCHS: 100
LR: 0.01
LR_POLICY: "poly"
OPTIMIZER: "sgd"
```
## 四. 配置/数据校验
在开始训练和评估之前,我们还需要对配置和数据进行一次校验,确保数据和配置是正确的。使用下述命令启动校验流程
```shell
python pdseg/check.py --cfg ./configs/test_pet.yaml
```
## 五. 开始训练
校验通过后,使用下述命令启动训练
```shell
python pdseg/train.py --use_gpu --cfg ./configs/test_pet.yaml
```
## 六. 进行评估
模型训练完成,使用下述命令启动评估
```shell
python pdseg/eval.py --use_gpu --cfg ./configs/test_pet.yaml
```
## 模型组合
|预训练模型名称|BackBone|Norm|数据集|配置|
|-|-|-|-|-|
|icnet_bn_cityscapes|-|bn|Cityscapes|MODEL.MODEL_NAME: icnet <br> MODEL.DEFAULT_NORM_TYPE: bn <br> MULTI_LOSS_WEIGHT: [1.0, 0.4, 0.16]|
# 关于本教程
* 本教程旨在介绍如何通过使用PaddleSeg提供的 ***`UNet`*** 预训练模型在自定义数据集上进行训练
* 在阅读本教程前,请确保您已经了解过PaddleSeg的[快速入门](../README.md#快速入门)[基础功能](../README.md#基础功能)等章节,以便对PaddleSeg有一定的了解
* 本教程的所有命令都基于PaddleSeg主目录进行执行
## 一. 准备待训练数据
我们提前准备好了一份数据集,通过以下代码进行下载
```shell
python dataset/download_pet.py
```
## 二. 下载预训练模型
关于PaddleSeg支持的所有预训练模型的列表,我们可以从[模型组合](#模型组合)中查看我们所需模型的名字和配置。
接着下载对应的预训练模型
```shell
python pretrained_model/download_model.py unet_bn_coco
```
## 三. 准备配置
接着我们需要确定相关配置,从本教程的角度,配置分为三部分:
* 数据集
* 训练集主目录
* 训练集文件列表
* 测试集文件列表
* 评估集文件列表
* 预训练模型
* 预训练模型名称
* 预训练模型的backbone网络
* 预训练模型的Normalization类型
* 预训练模型路径
* 其他
* 学习率
* Batch大小
* ...
在三者中,预训练模型的配置尤为重要,如果模型或者BACKBONE配置错误,会导致预训练的参数没有加载,进而影响收敛速度。预训练模型相关的配置如第二步所展示。
数据集的配置和数据路径有关,在本教程中,数据存放在`dataset/mini_pet`
其他配置则根据数据集和机器环境的情况进行调节,最终我们保存一个如下内容的yaml配置文件,存放路径为`configs/test_pet.yaml`
```yaml
# 数据集配置
DATASET:
DATA_DIR: "./dataset/mini_pet/"
NUM_CLASSES: 3
TEST_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
TRAIN_FILE_LIST: "./dataset/mini_pet/file_list/train_list.txt"
VAL_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt"
VIS_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
# 预训练模型配置
MODEL:
MODEL_NAME: "unet"
DEFAULT_NORM_TYPE: "bn"
TRAIN:
PRETRAINED_MODEL_DIR: "./pretrained_model/unet_bn_coco/"
# 其他配置
TRAIN_CROP_SIZE: (512, 512)
EVAL_CROP_SIZE: (512, 512)
AUG:
AUG_METHOD: "unpadding"
FIX_RESIZE_SIZE: (512, 512)
BATCH_SIZE: 4
TRAIN:
MODEL_SAVE_DIR: "./finetune/unet_pet/"
SNAPSHOT_EPOCH: 10
TEST:
TEST_MODEL: "./finetune/unet_pet/final"
SOLVER:
NUM_EPOCHS: 500
LR: 0.005
LR_POLICY: "poly"
OPTIMIZER: "adam"
```
## 四. 配置/数据校验
在开始训练和评估之前,我们还需要对配置和数据进行一次校验,确保数据和配置是正确的。使用下述命令启动校验流程
```shell
python pdseg/check.py --cfg ./configs/test_pet.yaml
```
## 五. 开始训练
校验通过后,使用下述命令启动训练
```shell
python pdseg/train.py --use_gpu --cfg ./configs/test_pet.yaml
```
## 六. 进行评估
模型训练完成,使用下述命令启动评估
```shell
python pdseg/eval.py --use_gpu --cfg ./configs/test_pet.yaml
```
## 模型组合
|预训练模型名称|BackBone|Norm|数据集|配置|
|-|-|-|-|-|
|unet_bn_coco|-|bn|Cityscapes|MODEL.MODEL_NAME: unet <br> MODEL.DEFAULT_NORM_TYPE: bn|
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册