Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
b673a74f
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b673a74f
编写于
4月 01, 2020
作者:
S
sjtubinlong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add Realtime Human Segmentation to contrib
上级
3da69b2b
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
399 addition
and
17 deletion
+399
-17
contrib/RealTimeHumanSeg/cpp/CMakeLists.txt
contrib/RealTimeHumanSeg/cpp/CMakeLists.txt
+4
-8
contrib/RealTimeHumanSeg/cpp/CMakeSettings.json
contrib/RealTimeHumanSeg/cpp/CMakeSettings.json
+0
-0
contrib/RealTimeHumanSeg/cpp/README.md
contrib/RealTimeHumanSeg/cpp/README.md
+0
-0
contrib/RealTimeHumanSeg/cpp/docs/linux_build.md
contrib/RealTimeHumanSeg/cpp/docs/linux_build.md
+4
-0
contrib/RealTimeHumanSeg/cpp/docs/windows_build.md
contrib/RealTimeHumanSeg/cpp/docs/windows_build.md
+2
-0
contrib/RealTimeHumanSeg/cpp/humanseg.cc
contrib/RealTimeHumanSeg/cpp/humanseg.cc
+5
-2
contrib/RealTimeHumanSeg/cpp/humanseg.h
contrib/RealTimeHumanSeg/cpp/humanseg.h
+4
-1
contrib/RealTimeHumanSeg/cpp/humanseg_postprocess.cc
contrib/RealTimeHumanSeg/cpp/humanseg_postprocess.cc
+0
-0
contrib/RealTimeHumanSeg/cpp/humanseg_postprocess.h
contrib/RealTimeHumanSeg/cpp/humanseg_postprocess.h
+0
-0
contrib/RealTimeHumanSeg/cpp/linux_build.sh
contrib/RealTimeHumanSeg/cpp/linux_build.sh
+6
-5
contrib/RealTimeHumanSeg/cpp/main.cc
contrib/RealTimeHumanSeg/cpp/main.cc
+2
-1
contrib/RealTimeHumanSeg/python/infer.py
contrib/RealTimeHumanSeg/python/infer.py
+370
-0
contrib/RealTimeHumanSeg/python/requirements.txt
contrib/RealTimeHumanSeg/python/requirements.txt
+2
-0
未找到文件。
contrib/RealTimeHumanSeg/CMakeLists.txt
→
contrib/RealTimeHumanSeg/
cpp/
CMakeLists.txt
浏览文件 @
b673a74f
...
...
@@ -70,10 +70,10 @@ if (WIN32)
include_directories
(
"
${
OPENCV_DIR
}
/opencv/build/include"
)
link_directories
(
"
${
OPENCV_DIR
}
/build/x64/vc14/lib"
)
else
()
find_package
(
OpenCV REQUIRED PATHS
${
OPENCV_DIR
}
/share/OpenCV NO_DEFAULT_PATH
)
include_directories
(
"
${
PADDLE_DIR
}
/paddle/include"
)
link_directories
(
"
${
PADDLE_DIR
}
/paddle/lib"
)
include_directories
(
"
${
OPENCV_DIR
}
/include"
)
link_directories
(
"
${
OPENCV_DIR
}
/lib"
)
include_directories
(
${
OpenCV_INCLUDE_DIRS
}
)
endif
()
if
(
WIN32
)
...
...
@@ -202,12 +202,8 @@ if(WITH_GPU)
endif
()
if
(
NOT WIN32
)
set
(
EXTERNAL_LIB
"-ldl -lrt -lgomp -lz -lm -lpthread"
"-lopencv_world -lopencv_img_hash"
"-lIlmImf -llibpng -lippiw -lippicv"
"-llibtiff -llibwebp -littnotify -llibjasper"
"-llibjpeg -lzlib"
)
set
(
DEPS
${
DEPS
}
${
EXTERNAL_LIB
}
)
set
(
EXTERNAL_LIB
"-ldl -lrt -lgomp -lz -lm -lpthread"
)
set
(
DEPS
${
DEPS
}
${
EXTERNAL_LIB
}
${
OpenCV_LIBS
}
)
endif
()
add_executable
(
main main.cc humanseg.cc humanseg_postprocess.cc
)
...
...
contrib/RealTimeHumanSeg/CMakeSettings.json
→
contrib/RealTimeHumanSeg/
cpp/
CMakeSettings.json
浏览文件 @
b673a74f
文件已移动
contrib/RealTimeHumanSeg/README.md
→
contrib/RealTimeHumanSeg/
cpp/
README.md
浏览文件 @
b673a74f
文件已移动
contrib/RealTimeHumanSeg/docs/linux_build.md
→
contrib/RealTimeHumanSeg/
cpp/
docs/linux_build.md
浏览文件 @
b673a74f
...
...
@@ -80,3 +80,7 @@ sh linux_build.sh
```
shell
./build/main ./models /PATH/TO/TEST_VIDEO
```
点击下载
[
测试视频
](
https://paddleseg.bj.bcebos.com/deploy/data/test.avi
)
预测的结果保存在视频文件
`result.avi`
中。
contrib/RealTimeHumanSeg/docs/windows_build.md
→
contrib/RealTimeHumanSeg/
cpp/
docs/windows_build.md
浏览文件 @
b673a74f
...
...
@@ -78,4 +78,6 @@ main.exe ./models/ ./data/test.avi
```
第一个参数即人像分割预测模型的路径,第二个参数即要预测的视频。
点击下载
[
测试视频
](
https://paddleseg.bj.bcebos.com/deploy/data/test.avi
)
运行后,预测结果保存在文件
`result.avi`
中。
contrib/RealTimeHumanSeg/humanseg.cc
→
contrib/RealTimeHumanSeg/
cpp/
humanseg.cc
浏览文件 @
b673a74f
...
...
@@ -44,7 +44,9 @@ void LoadModel(
std
::
unique_ptr
<
paddle
::
PaddlePredictor
>*
predictor
)
{
// Config the model info
paddle
::
AnalysisConfig
config
;
config
.
SetModel
(
model_dir
);
auto
prog_file
=
model_dir
+
"/__model__"
;
auto
params_file
=
model_dir
+
"/__params__"
;
config
.
SetModel
(
prog_file
,
params_file
);
if
(
use_gpu
)
{
config
.
EnableUseGpu
(
100
,
0
);
}
else
{
...
...
@@ -60,7 +62,8 @@ void LoadModel(
void
HumanSeg
::
Preprocess
(
const
cv
::
Mat
&
image_mat
)
{
// Clone the image : keep the original mat for postprocess
cv
::
Mat
im
=
image_mat
.
clone
();
cv
::
resize
(
im
,
im
,
cv
::
Size
(
192
,
192
),
0.
f
,
0.
f
,
cv
::
INTER_LINEAR
);
auto
eval_wh
=
cv
::
Size
(
eval_size_
[
0
],
eval_size_
[
1
]);
cv
::
resize
(
im
,
im
,
eval_wh
,
0.
f
,
0.
f
,
cv
::
INTER_LINEAR
);
im
.
convertTo
(
im
,
CV_32FC3
,
1.0
);
int
rc
=
im
.
channels
();
...
...
contrib/RealTimeHumanSeg/humanseg.h
→
contrib/RealTimeHumanSeg/
cpp/
humanseg.h
浏览文件 @
b673a74f
...
...
@@ -37,9 +37,11 @@ class HumanSeg {
explicit
HumanSeg
(
const
std
::
string
&
model_dir
,
const
std
::
vector
<
float
>&
mean
,
const
std
::
vector
<
float
>&
scale
,
const
std
::
vector
<
int
>&
eval_size
,
bool
use_gpu
=
false
)
:
mean_
(
mean
),
scale_
(
scale
)
{
scale_
(
scale
),
eval_size_
(
eval_size
)
{
LoadModel
(
model_dir
,
use_gpu
,
&
predictor_
);
}
...
...
@@ -60,4 +62,5 @@ class HumanSeg {
std
::
vector
<
uchar
>
segout_data_
;
std
::
vector
<
float
>
mean_
;
std
::
vector
<
float
>
scale_
;
std
::
vector
<
int
>
eval_size_
;
};
contrib/RealTimeHumanSeg/humanseg_postprocess.cc
→
contrib/RealTimeHumanSeg/
cpp/
humanseg_postprocess.cc
浏览文件 @
b673a74f
文件已移动
contrib/RealTimeHumanSeg/humanseg_postprocess.h
→
contrib/RealTimeHumanSeg/
cpp/
humanseg_postprocess.h
浏览文件 @
b673a74f
文件已移动
contrib/RealTimeHumanSeg/linux_build.sh
→
contrib/RealTimeHumanSeg/
cpp/
linux_build.sh
浏览文件 @
b673a74f
OPENCV_URL
=
https://paddleseg.bj.bcebos.com/deploy/deps/opencv34
1
.tar.bz2
if
[
!
-d
"./deps/opencv34
1
"
]
;
then
OPENCV_URL
=
https://paddleseg.bj.bcebos.com/deploy/deps/opencv34
6
.tar.bz2
if
[
!
-d
"./deps/opencv34
6
"
]
;
then
mkdir
-p
deps
cd
deps
wget
-c
${
OPENCV_URL
}
tar
xvfj opencv34
1
.tar.bz2
rm
-rf
opencv34
1
.tar.bz2
tar
xvfj opencv34
6
.tar.bz2
rm
-rf
opencv34
6
.tar.bz2
cd
..
fi
...
...
@@ -12,7 +12,8 @@ WITH_GPU=OFF
PADDLE_DIR
=
/root/projects/deps/fluid_inference/
CUDA_LIB
=
/usr/local/cuda-10.0/lib64/
CUDNN_LIB
=
/usr/local/cuda-10.0/lib64/
OPENCV_DIR
=
$(
pwd
)
/deps/opencv341/
OPENCV_DIR
=
$(
pwd
)
/deps/opencv346/
echo
${
OPENCV_DIR
}
rm
-rf
build
mkdir
-p
build
...
...
contrib/RealTimeHumanSeg/main.cc
→
contrib/RealTimeHumanSeg/
cpp/
main.cc
浏览文件 @
b673a74f
...
...
@@ -78,7 +78,8 @@ int main(int argc, char* argv[]) {
// Init Model
std
::
vector
<
float
>
means
=
{
104.008
,
116.669
,
122.675
};
std
::
vector
<
float
>
scale
=
{
1.000
,
1.000
,
1.000
};
HumanSeg
seg
(
model_dir
,
means
,
scale
,
use_gpu
);
std
::
vector
<
int
>
eval_sz
=
{
192
,
192
};
HumanSeg
seg
(
model_dir
,
means
,
scale
,
eval_sz
,
use_gpu
);
// Call ImagePredict while input_path is a image file path
// The output will be saved as result.jpeg
...
...
contrib/RealTimeHumanSeg/python/infer.py
0 → 100644
浏览文件 @
b673a74f
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python Inference solution for realtime humansegmentation"""
import
os
import
argparse
import
numpy
as
np
import
cv2
import
paddle.fluid
as
fluid
def
human_seg_tracking
(
pre_gray
,
cur_gray
,
prev_cfd
,
dl_weights
,
disflow
):
"""Optical flow tracking for human segmentation
Args:
pre_gray: Grayscale of previous frame.
cur_gray: Grayscale of current frame.
prev_cfd: Optical flow of previous frame.
dl_weights: Merged weights data.
disflow: A data structure represents optical flow.
Returns:
is_track: Binary graph, whethe a pixel matched with a optical flow point.
track_cfd: tracking optical flow image.
"""
check_thres
=
8
hgt
,
wdh
=
pre_gray
.
shape
[:
2
]
track_cfd
=
np
.
zeros_like
(
prev_cfd
)
is_track
=
np
.
zeros_like
(
pre_gray
)
# compute forward optical flow
flow_fw
=
disflow
.
calc
(
pre_gray
,
cur_gray
,
None
)
# compute backword optical flow
flow_bw
=
disflow
.
calc
(
cur_gray
,
pre_gray
,
None
)
get_round
=
lambda
data
:
(
int
)(
data
+
0.5
)
if
data
>=
0
else
(
int
)(
data
-
0.5
)
for
row
in
range
(
hgt
):
for
col
in
range
(
wdh
):
# Calculate new coordinate after optfow process.
# (row, col) -> (cur_x, cur_y)
fxy_fw
=
flow_fw
[
row
,
col
]
dx_fw
=
get_round
(
fxy_fw
[
0
])
cur_x
=
dx_fw
+
col
dy_fw
=
get_round
(
fxy_fw
[
1
])
cur_y
=
dy_fw
+
row
if
cur_x
<
0
or
cur_x
>=
wdh
or
cur_y
<
0
or
cur_y
>=
hgt
:
continue
fxy_bw
=
flow_bw
[
cur_y
,
cur_x
]
dx_bw
=
get_round
(
fxy_bw
[
0
])
dy_bw
=
get_round
(
fxy_bw
[
1
])
# Filt the Optical flow point with a threshold
lmt
=
((
dy_fw
+
dy_bw
)
*
(
dy_fw
+
dy_bw
)
+
(
dx_fw
+
dx_bw
)
*
(
dx_fw
+
dx_bw
))
if
lmt
>=
check_thres
:
continue
# Downgrade still points
if
abs
(
dy_fw
)
<=
0
and
abs
(
dx_fw
)
<=
0
and
abs
(
dy_bw
)
<=
0
and
abs
(
dx_bw
)
<=
0
:
dl_weights
[
cur_y
,
cur_x
]
=
0.05
is_track
[
cur_y
,
cur_x
]
=
1
track_cfd
[
cur_y
,
cur_x
]
=
prev_cfd
[
row
,
col
]
return
track_cfd
,
is_track
,
dl_weights
def
human_seg_track_fuse
(
track_cfd
,
dl_cfd
,
dl_weights
,
is_track
):
"""Fusion of Optical flow track and segmentation
Args:
track_cfd: Optical flow track.
dl_cfd: Segmentation result of current frame.
dl_weights: Merged weights data.
is_track: Binary graph, whethe a pixel matched with a optical flow point.
Returns:
cur_cfd: Fusion of Optical flow track and segmentation result.
"""
cur_cfd
=
dl_cfd
.
copy
()
idxs
=
np
.
where
(
is_track
>
0
)
for
i
in
range
(
len
(
idxs
)):
x
,
y
=
idxs
[
0
][
i
],
idxs
[
1
][
i
]
dl_score
=
dl_cfd
[
y
,
x
]
track_score
=
track_cfd
[
y
,
x
]
if
dl_score
>
0.9
or
dl_score
<
0.1
:
if
dl_weights
[
x
,
y
]
<
0.1
:
cur_cfd
[
x
,
y
]
=
0.3
*
dl_score
+
0.7
*
track_score
else
:
cur_cfd
[
x
,
y
]
=
0.4
*
dl_score
+
0.6
*
track_score
else
:
cur_cfd
[
x
,
y
]
=
dl_weights
[
x
,
y
]
*
dl_score
+
(
1
-
dl_weights
[
x
,
y
])
*
track_score
return
cur_cfd
def
threshold_mask
(
img
,
thresh_bg
,
thresh_fg
):
"""Threshold mask for image foreground and background
Args:
img : Original image, an instance of np.uint8 array.
thresh_bg : Threshold for background, set to 0 when less than it.
thresh_fg : Threshold for foreground, set to 1 when greater than it.
Returns:
dst : Image after set thresthold mask, ans instance of np.float32 array.
"""
dst
=
(
img
/
255.0
-
thresh_bg
)
/
(
thresh_fg
-
thresh_bg
)
dst
[
np
.
where
(
dst
>
1
)]
=
1
dst
[
np
.
where
(
dst
<
0
)]
=
0
return
dst
.
astype
(
np
.
float32
)
def
optflow_handle
(
cur_gray
,
scoremap
,
is_init
):
"""Processing optical flow and segmentation result.
Args:
cur_gray : Grayscale of current frame.
scoremap : Segmentation result of current frame.
is_init : True only when process the first frame of a video.
Returns:
dst : Image after set thresthold mask, ans instance of np.float32 array.
"""
width
,
height
=
scoremap
.
shape
[
0
],
scoremap
.
shape
[
1
]
disflow
=
cv2
.
DISOpticalFlow_create
(
cv2
.
DISOPTICAL_FLOW_PRESET_ULTRAFAST
)
prev_gray
=
np
.
zeros
((
height
,
width
),
np
.
uint8
)
prev_cfd
=
np
.
zeros
((
height
,
width
),
np
.
float32
)
cur_cfd
=
scoremap
.
copy
()
if
is_init
:
is_init
=
False
if
height
<=
64
or
width
<=
64
:
disflow
.
setFinestScale
(
1
)
elif
height
<=
160
or
width
<=
160
:
disflow
.
setFinestScale
(
2
)
else
:
disflow
.
setFinestScale
(
3
)
fusion_cfd
=
cur_cfd
else
:
weights
=
np
.
ones
((
width
,
height
),
np
.
float32
)
*
0.3
track_cfd
,
is_track
,
weights
=
human_seg_tracking
(
prev_gray
,
cur_gray
,
prev_cfd
,
weights
,
disflow
)
fusion_cfd
=
human_seg_track_fuse
(
track_cfd
,
cur_cfd
,
weights
,
is_track
)
fusion_cfd
=
cv2
.
GaussianBlur
(
fusion_cfd
,
(
3
,
3
),
0
)
return
fusion_cfd
class
HumanSeg
:
"""Human Segmentation Class
This Class instance will load the inference model and do inference
on input image object.
It includes the key stages for a object segmentation inference task.
Call run_predict on your image and it will return a processed image.
"""
def
__init__
(
self
,
model_dir
,
mean
,
scale
,
eval_size
,
use_gpu
=
False
):
self
.
mean
=
np
.
array
(
mean
).
reshape
((
3
,
1
,
1
))
self
.
scale
=
np
.
array
(
scale
).
reshape
((
3
,
1
,
1
))
self
.
eval_size
=
eval_size
self
.
load_model
(
model_dir
,
use_gpu
)
def
load_model
(
self
,
model_dir
,
use_gpu
):
"""Load paddle inference model.
Args:
model_dir: The inference model path includes `__model__` and `__params__`.
use_gpu: Enable gpu if use_gpu is True
"""
prog_file
=
os
.
path
.
join
(
model_dir
,
'__model__'
)
params_file
=
os
.
path
.
join
(
model_dir
,
'__params__'
)
config
=
fluid
.
core
.
AnalysisConfig
(
prog_file
,
params_file
)
if
use_gpu
:
config
.
enable_use_gpu
(
100
,
0
)
config
.
switch_ir_optim
(
True
)
else
:
config
.
disable_gpu
()
config
.
disable_glog_info
()
config
.
switch_specify_input_names
(
True
)
config
.
enable_memory_optim
()
self
.
predictor
=
fluid
.
core
.
create_paddle_predictor
(
config
)
def
preprocess
(
self
,
image
):
"""Preprocess input image.
Convert hwc_rgb to chw_bgr.
Args:
image: The input opencv image object.
Returns:
A preprocessed image object.
"""
img_mat
=
cv2
.
resize
(
image
,
self
.
eval_size
,
interpolation
=
cv2
.
INTER_LINEAR
)
# HWC -> CHW
img_mat
=
img_mat
.
swapaxes
(
1
,
2
)
img_mat
=
img_mat
.
swapaxes
(
0
,
1
)
# Convert to float
img_mat
=
img_mat
[:,
:,
:].
astype
(
'float32'
)
# img_mat = (img_mat - mean) * scale
img_mat
=
img_mat
-
self
.
mean
img_mat
=
img_mat
*
self
.
scale
img_mat
=
img_mat
[
np
.
newaxis
,
:,
:,
:]
return
img_mat
def
postprocess
(
self
,
image
,
output_data
):
"""Postprocess the inference result and original input image.
Args:
image: The original opencv image object.
output_data: The inference output of paddle's humansegmentation model.
Returns:
The result merged original image and segmentation result with optical-flow improvement.
"""
scoremap
=
output_data
[
0
,
1
,
:,
:]
scoremap
=
(
scoremap
*
255
).
astype
(
np
.
uint8
)
ori_h
,
ori_w
=
image
.
shape
[
0
],
image
.
shape
[
1
]
evl_h
,
evl_w
=
self
.
eval_size
[
0
],
self
.
eval_size
[
1
]
# optical flow processing
cur_gray
=
cv2
.
cvtColor
(
image
,
cv2
.
COLOR_BGR2GRAY
)
cur_gray
=
cv2
.
resize
(
cur_gray
,
(
evl_w
,
evl_h
))
optflow_map
=
optflow_handle
(
cur_gray
,
scoremap
,
False
)
optflow_map
=
cv2
.
GaussianBlur
(
optflow_map
,
(
3
,
3
),
0
)
optflow_map
=
threshold_mask
(
optflow_map
,
thresh_bg
=
0.2
,
thresh_fg
=
0.8
)
optflow_map
=
cv2
.
resize
(
optflow_map
,
(
ori_w
,
ori_h
))
optflow_map
=
np
.
repeat
(
optflow_map
[:,
:,
np
.
newaxis
],
3
,
axis
=
2
)
bg_im
=
np
.
ones_like
(
optflow_map
)
*
255
comb
=
(
optflow_map
*
image
+
(
1
-
optflow_map
)
*
bg_im
).
astype
(
np
.
uint8
)
return
comb
def
run_predict
(
self
,
image
):
"""Run Predicting on an opencv image object.
Preprocess the image, do inference, and then postprocess the infering output.
Args:
image: A valid opencv image object.
Returns:
The segmentation result which represents as an opencv image object.
"""
im_mat
=
self
.
preprocess
(
image
)
im_tensor
=
fluid
.
core
.
PaddleTensor
(
im_mat
.
copy
().
astype
(
'float32'
))
output_data
=
self
.
predictor
.
run
([
im_tensor
])[
0
]
output_data
=
output_data
.
as_ndarray
()
return
self
.
postprocess
(
image
,
output_data
)
def
predict_image
(
seg
,
image_path
):
"""Do Predicting on a image file.
Decoding the image file and do predicting on it.
The result will be saved as `result.jpeg`.
Args:
seg: The HumanSeg Object which holds a inference model.
Do preprocessing / predicting / postprocessing on a input image object.
image_path: Path of the image file needs to be processed.
"""
img_mat
=
cv2
.
imread
(
image_path
)
img_mat
=
seg
.
run_predict
(
img_mat
)
cv2
.
imwrite
(
'result.jpeg'
,
img_mat
)
def
predict_video
(
seg
,
video_path
):
"""Do Predicting on a video file.
Decoding the video file and do predicting on each frame.
All result will be saved as `result.avi`.
Args:
seg: The HumanSeg Object which holds a inference model.
Do preprocessing / predicting / postprocessing on a input image object.
video_path: Path of a video file needs to be processed.
"""
cap
=
cv2
.
VideoCapture
(
video_path
)
if
not
cap
.
isOpened
():
print
(
"Error opening video stream or file"
)
return
width
=
int
(
cap
.
get
(
cv2
.
CAP_PROP_FRAME_WIDTH
))
height
=
int
(
cap
.
get
(
cv2
.
CAP_PROP_FRAME_HEIGHT
))
fps
=
cap
.
get
(
cv2
.
CAP_PROP_FPS
)
# Result Video Writer
out
=
cv2
.
VideoWriter
(
'result.avi'
,
cv2
.
VideoWriter_fourcc
(
'M'
,
'J'
,
'P'
,
'G'
),
fps
,
(
width
,
height
))
# Start capturing from video
while
cap
.
isOpened
():
ret
,
frame
=
cap
.
read
()
if
ret
:
img_mat
=
seg
.
run_predict
(
frame
)
out
.
write
(
img_mat
)
else
:
break
cap
.
release
()
out
.
release
()
def
predict_camera
(
seg
):
"""Do Predicting on a camera video stream.
Capturing each video frame from camera and do predicting on it.
All result frames will be shown in a GUI window.
Args:
seg: The HumanSeg Object which holds a inference model.
Do preprocessing / predicting / postprocessing on a input image object.
"""
cap
=
cv2
.
VideoCapture
(
0
)
if
not
cap
.
isOpened
():
print
(
"Error opening video stream or file"
)
return
# Start capturing from video
while
cap
.
isOpened
():
ret
,
frame
=
cap
.
read
()
if
ret
:
img_mat
=
seg
.
run_predict
(
frame
)
cv2
.
imshow
(
'HumanSegmentation'
,
img_mat
)
if
cv2
.
waitKey
(
1
)
&
0xFF
==
ord
(
'q'
):
break
else
:
break
cap
.
release
()
def
main
(
args
):
"""Real Entrypoint of the script.
Load the human segmentation inference model and do predicting on the input resource.
Support three types of input: camera stream / video file / image file.
Args:
args: The command-line args for inference model.
Open camera and do predicting on camera stream while `args.use_camera` is true.
Open the video file and do predicting on it while `args.video_path` is valid.
Open the image file and do predicting on it while `args.img_path` is valid.
"""
model_dir
=
args
.
model_dir
use_gpu
=
args
.
use_gpu
# Init model
mean
=
[
104.008
,
116.669
,
122.675
]
scale
=
[
1.0
,
1.0
,
1.0
]
eval_size
=
(
192
,
192
)
seg
=
HumanSeg
(
model_dir
,
mean
,
scale
,
eval_size
,
use_gpu
)
if
args
.
use_camera
:
# if enable input video stream from camera
predict_camera
(
seg
)
elif
args
.
video_path
:
# if video_path valid, do predicting on the video
predict_video
(
seg
,
args
.
video_path
)
elif
args
.
img_path
:
# if img_path valid, do predicting on the image
predict_image
(
seg
,
args
.
img_path
)
def
parse_args
():
"""Parsing command-line argments
"""
parser
=
argparse
.
ArgumentParser
(
'Realtime Human Segmentation'
)
parser
.
add_argument
(
'--model_dir'
,
type
=
str
,
default
=
''
,
help
=
'path of human segmentation model'
)
parser
.
add_argument
(
'--img_path'
,
type
=
str
,
default
=
''
,
help
=
'path of input image'
)
parser
.
add_argument
(
'--video_path'
,
type
=
str
,
default
=
''
,
help
=
'path of input video'
)
parser
.
add_argument
(
'--use_camera'
,
type
=
bool
,
default
=
False
,
help
=
'input video stream from camera'
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
bool
,
default
=
False
,
help
=
'enable gpu'
)
return
parser
.
parse_args
()
if
__name__
==
"__main__"
:
args
=
parse_args
()
main
(
args
)
contrib/RealTimeHumanSeg/python/requirements.txt
0 → 100644
浏览文件 @
b673a74f
opencv-python==4.1.2.30
opencv-contrib-python==4.2.0.32
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录