提交 b673a74f 编写于 作者: S sjtubinlong

add Realtime Human Segmentation to contrib

上级 3da69b2b
......@@ -70,10 +70,10 @@ if (WIN32)
include_directories("${OPENCV_DIR}/opencv/build/include")
link_directories("${OPENCV_DIR}/build/x64/vc14/lib")
else ()
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/share/OpenCV NO_DEFAULT_PATH)
include_directories("${PADDLE_DIR}/paddle/include")
link_directories("${PADDLE_DIR}/paddle/lib")
include_directories("${OPENCV_DIR}/include")
link_directories("${OPENCV_DIR}/lib")
include_directories(${OpenCV_INCLUDE_DIRS})
endif ()
if (WIN32)
......@@ -202,12 +202,8 @@ if(WITH_GPU)
endif()
if (NOT WIN32)
set(EXTERNAL_LIB "-ldl -lrt -lgomp -lz -lm -lpthread"
"-lopencv_world -lopencv_img_hash"
"-lIlmImf -llibpng -lippiw -lippicv"
"-llibtiff -llibwebp -littnotify -llibjasper"
"-llibjpeg -lzlib")
set(DEPS ${DEPS} ${EXTERNAL_LIB})
set(EXTERNAL_LIB "-ldl -lrt -lgomp -lz -lm -lpthread")
set(DEPS ${DEPS} ${EXTERNAL_LIB} ${OpenCV_LIBS})
endif()
add_executable(main main.cc humanseg.cc humanseg_postprocess.cc)
......
......@@ -80,3 +80,7 @@ sh linux_build.sh
```shell
./build/main ./models /PATH/TO/TEST_VIDEO
```
点击下载[测试视频](https://paddleseg.bj.bcebos.com/deploy/data/test.avi)
预测的结果保存在视频文件`result.avi`中。
......@@ -78,4 +78,6 @@ main.exe ./models/ ./data/test.avi
```
第一个参数即人像分割预测模型的路径,第二个参数即要预测的视频。
点击下载[测试视频](https://paddleseg.bj.bcebos.com/deploy/data/test.avi)
运行后,预测结果保存在文件`result.avi`中。
......@@ -44,7 +44,9 @@ void LoadModel(
std::unique_ptr<paddle::PaddlePredictor>* predictor) {
// Config the model info
paddle::AnalysisConfig config;
config.SetModel(model_dir);
auto prog_file = model_dir + "/__model__";
auto params_file = model_dir + "/__params__";
config.SetModel(prog_file, params_file);
if (use_gpu) {
config.EnableUseGpu(100, 0);
} else {
......@@ -60,7 +62,8 @@ void LoadModel(
void HumanSeg::Preprocess(const cv::Mat& image_mat) {
// Clone the image : keep the original mat for postprocess
cv::Mat im = image_mat.clone();
cv::resize(im, im, cv::Size(192, 192), 0.f, 0.f, cv::INTER_LINEAR);
auto eval_wh = cv::Size(eval_size_[0], eval_size_[1]);
cv::resize(im, im, eval_wh, 0.f, 0.f, cv::INTER_LINEAR);
im.convertTo(im, CV_32FC3, 1.0);
int rc = im.channels();
......
......@@ -37,9 +37,11 @@ class HumanSeg {
explicit HumanSeg(const std::string& model_dir,
const std::vector<float>& mean,
const std::vector<float>& scale,
const std::vector<int>& eval_size,
bool use_gpu = false) :
mean_(mean),
scale_(scale) {
scale_(scale),
eval_size_(eval_size) {
LoadModel(model_dir, use_gpu, &predictor_);
}
......@@ -60,4 +62,5 @@ class HumanSeg {
std::vector<uchar> segout_data_;
std::vector<float> mean_;
std::vector<float> scale_;
std::vector<int> eval_size_;
};
OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/deps/opencv341.tar.bz2
if [ ! -d "./deps/opencv341" ]; then
OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/deps/opencv346.tar.bz2
if [ ! -d "./deps/opencv346" ]; then
mkdir -p deps
cd deps
wget -c ${OPENCV_URL}
tar xvfj opencv341.tar.bz2
rm -rf opencv341.tar.bz2
tar xvfj opencv346.tar.bz2
rm -rf opencv346.tar.bz2
cd ..
fi
......@@ -12,7 +12,8 @@ WITH_GPU=OFF
PADDLE_DIR=/root/projects/deps/fluid_inference/
CUDA_LIB=/usr/local/cuda-10.0/lib64/
CUDNN_LIB=/usr/local/cuda-10.0/lib64/
OPENCV_DIR=$(pwd)/deps/opencv341/
OPENCV_DIR=$(pwd)/deps/opencv346/
echo ${OPENCV_DIR}
rm -rf build
mkdir -p build
......
......@@ -78,7 +78,8 @@ int main(int argc, char* argv[]) {
// Init Model
std::vector<float> means = {104.008, 116.669, 122.675};
std::vector<float> scale = {1.000, 1.000, 1.000};
HumanSeg seg(model_dir, means, scale, use_gpu);
std::vector<int> eval_sz = {192, 192};
HumanSeg seg(model_dir, means, scale, eval_sz, use_gpu);
// Call ImagePredict while input_path is a image file path
// The output will be saved as result.jpeg
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python Inference solution for realtime humansegmentation"""
import os
import argparse
import numpy as np
import cv2
import paddle.fluid as fluid
def human_seg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow):
"""Optical flow tracking for human segmentation
Args:
pre_gray: Grayscale of previous frame.
cur_gray: Grayscale of current frame.
prev_cfd: Optical flow of previous frame.
dl_weights: Merged weights data.
disflow: A data structure represents optical flow.
Returns:
is_track: Binary graph, whethe a pixel matched with a optical flow point.
track_cfd: tracking optical flow image.
"""
check_thres = 8
hgt, wdh = pre_gray.shape[:2]
track_cfd = np.zeros_like(prev_cfd)
is_track = np.zeros_like(pre_gray)
# compute forward optical flow
flow_fw = disflow.calc(pre_gray, cur_gray, None)
# compute backword optical flow
flow_bw = disflow.calc(cur_gray, pre_gray, None)
get_round = lambda data: (int)(data + 0.5) if data >= 0 else (int)(data -0.5)
for row in range(hgt):
for col in range(wdh):
# Calculate new coordinate after optfow process.
# (row, col) -> (cur_x, cur_y)
fxy_fw = flow_fw[row, col]
dx_fw = get_round(fxy_fw[0])
cur_x = dx_fw + col
dy_fw = get_round(fxy_fw[1])
cur_y = dy_fw + row
if cur_x < 0 or cur_x >= wdh or cur_y < 0 or cur_y >= hgt:
continue
fxy_bw = flow_bw[cur_y, cur_x]
dx_bw = get_round(fxy_bw[0])
dy_bw = get_round(fxy_bw[1])
# Filt the Optical flow point with a threshold
lmt = ((dy_fw + dy_bw) * (dy_fw + dy_bw) + (dx_fw + dx_bw) * (dx_fw + dx_bw))
if lmt >= check_thres:
continue
# Downgrade still points
if abs(dy_fw) <= 0 and abs(dx_fw) <= 0 and abs(dy_bw) <= 0 and abs(dx_bw) <= 0:
dl_weights[cur_y, cur_x] = 0.05
is_track[cur_y, cur_x] = 1
track_cfd[cur_y, cur_x] = prev_cfd[row, col]
return track_cfd, is_track, dl_weights
def human_seg_track_fuse(track_cfd, dl_cfd, dl_weights, is_track):
"""Fusion of Optical flow track and segmentation
Args:
track_cfd: Optical flow track.
dl_cfd: Segmentation result of current frame.
dl_weights: Merged weights data.
is_track: Binary graph, whethe a pixel matched with a optical flow point.
Returns:
cur_cfd: Fusion of Optical flow track and segmentation result.
"""
cur_cfd = dl_cfd.copy()
idxs = np.where(is_track > 0)
for i in range(len(idxs)):
x, y = idxs[0][i], idxs[1][i]
dl_score = dl_cfd[y, x]
track_score = track_cfd[y, x]
if dl_score > 0.9 or dl_score < 0.1:
if dl_weights[x, y] < 0.1:
cur_cfd[x, y] = 0.3 * dl_score + 0.7 * track_score
else:
cur_cfd[x, y] = 0.4 * dl_score + 0.6 * track_score
else:
cur_cfd[x, y] = dl_weights[x, y] * dl_score + (1 - dl_weights[x, y]) * track_score
return cur_cfd
def threshold_mask(img, thresh_bg, thresh_fg):
"""Threshold mask for image foreground and background
Args:
img : Original image, an instance of np.uint8 array.
thresh_bg : Threshold for background, set to 0 when less than it.
thresh_fg : Threshold for foreground, set to 1 when greater than it.
Returns:
dst : Image after set thresthold mask, ans instance of np.float32 array.
"""
dst = (img / 255.0 - thresh_bg) / (thresh_fg - thresh_bg)
dst[np.where(dst > 1)] = 1
dst[np.where(dst < 0)] = 0
return dst.astype(np.float32)
def optflow_handle(cur_gray, scoremap, is_init):
"""Processing optical flow and segmentation result.
Args:
cur_gray : Grayscale of current frame.
scoremap : Segmentation result of current frame.
is_init : True only when process the first frame of a video.
Returns:
dst : Image after set thresthold mask, ans instance of np.float32 array.
"""
width, height = scoremap.shape[0], scoremap.shape[1]
disflow = cv2.DISOpticalFlow_create(
cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
prev_gray = np.zeros((height, width), np.uint8)
prev_cfd = np.zeros((height, width), np.float32)
cur_cfd = scoremap.copy()
if is_init:
is_init = False
if height <= 64 or width <= 64:
disflow.setFinestScale(1)
elif height <= 160 or width <= 160:
disflow.setFinestScale(2)
else:
disflow.setFinestScale(3)
fusion_cfd = cur_cfd
else:
weights = np.ones((width, height), np.float32) * 0.3
track_cfd, is_track, weights = human_seg_tracking(
prev_gray, cur_gray, prev_cfd, weights, disflow)
fusion_cfd = human_seg_track_fuse(track_cfd, cur_cfd, weights, is_track)
fusion_cfd = cv2.GaussianBlur(fusion_cfd, (3, 3), 0)
return fusion_cfd
class HumanSeg:
"""Human Segmentation Class
This Class instance will load the inference model and do inference
on input image object.
It includes the key stages for a object segmentation inference task.
Call run_predict on your image and it will return a processed image.
"""
def __init__(self, model_dir, mean, scale, eval_size, use_gpu=False):
self.mean = np.array(mean).reshape((3, 1, 1))
self.scale = np.array(scale).reshape((3, 1, 1))
self.eval_size = eval_size
self.load_model(model_dir, use_gpu)
def load_model(self, model_dir, use_gpu):
"""Load paddle inference model.
Args:
model_dir: The inference model path includes `__model__` and `__params__`.
use_gpu: Enable gpu if use_gpu is True
"""
prog_file = os.path.join(model_dir, '__model__')
params_file = os.path.join(model_dir, '__params__')
config = fluid.core.AnalysisConfig(prog_file, params_file)
if use_gpu:
config.enable_use_gpu(100, 0)
config.switch_ir_optim(True)
else:
config.disable_gpu()
config.disable_glog_info()
config.switch_specify_input_names(True)
config.enable_memory_optim()
self.predictor = fluid.core.create_paddle_predictor(config)
def preprocess(self, image):
"""Preprocess input image.
Convert hwc_rgb to chw_bgr.
Args:
image: The input opencv image object.
Returns:
A preprocessed image object.
"""
img_mat = cv2.resize(
image, self.eval_size, interpolation=cv2.INTER_LINEAR)
# HWC -> CHW
img_mat = img_mat.swapaxes(1, 2)
img_mat = img_mat.swapaxes(0, 1)
# Convert to float
img_mat = img_mat[:, :, :].astype('float32')
# img_mat = (img_mat - mean) * scale
img_mat = img_mat - self.mean
img_mat = img_mat * self.scale
img_mat = img_mat[np.newaxis, :, :, :]
return img_mat
def postprocess(self, image, output_data):
"""Postprocess the inference result and original input image.
Args:
image: The original opencv image object.
output_data: The inference output of paddle's humansegmentation model.
Returns:
The result merged original image and segmentation result with optical-flow improvement.
"""
scoremap = output_data[0, 1, :, :]
scoremap = (scoremap * 255).astype(np.uint8)
ori_h, ori_w = image.shape[0], image.shape[1]
evl_h, evl_w = self.eval_size[0], self.eval_size[1]
# optical flow processing
cur_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cur_gray = cv2.resize(cur_gray, (evl_w, evl_h))
optflow_map = optflow_handle(cur_gray, scoremap, False)
optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
optflow_map = threshold_mask(optflow_map, thresh_bg=0.2, thresh_fg=0.8)
optflow_map = cv2.resize(optflow_map, (ori_w, ori_h))
optflow_map = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
bg_im = np.ones_like(optflow_map) * 255
comb = (optflow_map * image + (1 - optflow_map) * bg_im).astype(np.uint8)
return comb
def run_predict(self, image):
"""Run Predicting on an opencv image object.
Preprocess the image, do inference, and then postprocess the infering output.
Args:
image: A valid opencv image object.
Returns:
The segmentation result which represents as an opencv image object.
"""
im_mat = self.preprocess(image)
im_tensor = fluid.core.PaddleTensor(im_mat.copy().astype('float32'))
output_data = self.predictor.run([im_tensor])[0]
output_data = output_data.as_ndarray()
return self.postprocess(image, output_data)
def predict_image(seg, image_path):
"""Do Predicting on a image file.
Decoding the image file and do predicting on it.
The result will be saved as `result.jpeg`.
Args:
seg: The HumanSeg Object which holds a inference model.
Do preprocessing / predicting / postprocessing on a input image object.
image_path: Path of the image file needs to be processed.
"""
img_mat = cv2.imread(image_path)
img_mat = seg.run_predict(img_mat)
cv2.imwrite('result.jpeg', img_mat)
def predict_video(seg, video_path):
"""Do Predicting on a video file.
Decoding the video file and do predicting on each frame.
All result will be saved as `result.avi`.
Args:
seg: The HumanSeg Object which holds a inference model.
Do preprocessing / predicting / postprocessing on a input image object.
video_path: Path of a video file needs to be processed.
"""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error opening video stream or file")
return
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
# Result Video Writer
out = cv2.VideoWriter('result.avi',
cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps,
(width, height))
# Start capturing from video
while cap.isOpened():
ret, frame = cap.read()
if ret:
img_mat = seg.run_predict(frame)
out.write(img_mat)
else:
break
cap.release()
out.release()
def predict_camera(seg):
"""Do Predicting on a camera video stream.
Capturing each video frame from camera and do predicting on it.
All result frames will be shown in a GUI window.
Args:
seg: The HumanSeg Object which holds a inference model.
Do preprocessing / predicting / postprocessing on a input image object.
"""
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Error opening video stream or file")
return
# Start capturing from video
while cap.isOpened():
ret, frame = cap.read()
if ret:
img_mat = seg.run_predict(frame)
cv2.imshow('HumanSegmentation', img_mat)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
cap.release()
def main(args):
"""Real Entrypoint of the script.
Load the human segmentation inference model and do predicting on the input resource.
Support three types of input: camera stream / video file / image file.
Args:
args: The command-line args for inference model.
Open camera and do predicting on camera stream while `args.use_camera` is true.
Open the video file and do predicting on it while `args.video_path` is valid.
Open the image file and do predicting on it while `args.img_path` is valid.
"""
model_dir = args.model_dir
use_gpu = args.use_gpu
# Init model
mean = [104.008, 116.669, 122.675]
scale = [1.0, 1.0, 1.0]
eval_size = (192, 192)
seg = HumanSeg(model_dir, mean, scale, eval_size, use_gpu)
if args.use_camera:
# if enable input video stream from camera
predict_camera(seg)
elif args.video_path:
# if video_path valid, do predicting on the video
predict_video(seg, args.video_path)
elif args.img_path:
# if img_path valid, do predicting on the image
predict_image(seg, args.img_path)
def parse_args():
"""Parsing command-line argments
"""
parser = argparse.ArgumentParser('Realtime Human Segmentation')
parser.add_argument('--model_dir',
type=str,
default='',
help='path of human segmentation model')
parser.add_argument('--img_path',
type=str,
default='',
help='path of input image')
parser.add_argument('--video_path',
type=str,
default='',
help='path of input video')
parser.add_argument('--use_camera',
type=bool,
default=False,
help='input video stream from camera')
parser.add_argument('--use_gpu',
type=bool,
default=False,
help='enable gpu')
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
main(args)
opencv-python==4.1.2.30
opencv-contrib-python==4.2.0.32
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册