提交 3a40055a 编写于 作者: C chenguowei01

dump environment info

上级 d72fb677
......@@ -84,7 +84,7 @@ def parse_args():
def main(args):
env_info = get_environ_info()
places = fluid.CUDAPlace(ParallelEnv().dev_id) \
if env_info['place'] == 'cuda' and fluid.is_compiled_with_cuda() \
if env_info['Paddle compiled with cuda'] and env_info['GPUs used'] \
else fluid.CPUPlace()
if args.dataset not in DATASETS:
......
......@@ -21,6 +21,7 @@ from dygraph.datasets import DATASETS
import dygraph.transforms as T
from dygraph.models import MODELS
from dygraph.utils import get_environ_info
from dygraph.utils import logger
from dygraph.core import train
......@@ -129,8 +130,13 @@ def parse_args():
def main(args):
env_info = get_environ_info()
info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
info = '\n'.join(['\n', format('Environment Information', '-^48s')] + info +
['-' * 48])
logger.info(info)
places = fluid.CUDAPlace(ParallelEnv().dev_id) \
if env_info['place'] == 'cuda' and fluid.is_compiled_with_cuda() \
if env_info['Paddle compiled with cuda'] and env_info['GPUs used'] \
else fluid.CPUPlace()
if args.dataset not in DATASETS:
......
......@@ -17,3 +17,4 @@ from . import download
from .metrics import ConfusionMatrix
from .utils import *
from .timer import Timer, calculate_eta
from .get_environ_info import get_environ_info
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from collections import OrderedDict
import subprocess
import glob
import paddle
import paddle.fluid as fluid
import cv2
IS_WINDOWS = sys.platform == 'win32'
def _find_cuda_home():
'''Finds the CUDA install path. It refers to the implementation of
pytorch <https://github.com/pytorch/pytorch/blob/master/torch/utils/cpp_extension.py>.
'''
# Guess #1
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home is None:
# Guess #2
try:
which = 'where' if IS_WINDOWS else 'which'
nvcc = subprocess.check_output([which,
'nvcc']).decode().rstrip('\r\n')
cuda_home = os.path.dirname(os.path.dirname(nvcc))
except Exception:
# Guess #3
if IS_WINDOWS:
cuda_homes = glob.glob(
'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*')
if len(cuda_homes) == 0:
cuda_home = ''
else:
cuda_home = cuda_homes[0]
else:
cuda_home = '/usr/local/cuda'
if not os.path.exists(cuda_home):
cuda_home = None
return cuda_home
def _get_nvcc_info(cuda_home):
if cuda_home is not None and os.path.isdir(cuda_home):
try:
nvcc = os.path.join(cuda_home, 'bin/nvcc')
nvcc = subprocess.check_output(
"{} -V".format(nvcc), shell=True).decode()
nvcc = nvcc.strip().split('\n')[-1]
except subprocess.SubprocessError:
nvcc = "Not Available"
return nvcc
def _get_gpu_info():
gpu_info = subprocess.check_output(['nvidia-smi', '-L']).decode().strip()
gpu_info = gpu_info.split('\n')
for i in range(len(gpu_info)):
gpu_info[i] = ' '.join(gpu_info[i].split(' ')[:4])
return gpu_info
def get_environ_info():
"""collect environment information"""
env_info = {}
env_info['system platform'] = sys.platform
if env_info['system platform'] == 'linux':
lsb_v = subprocess.check_output(['lsb_release', '-v']).decode().strip()
lsb_v = lsb_v.replace('\t', ' ')
lsb_d = subprocess.check_output(['lsb_release', '-d']).decode().strip()
lsb_d = lsb_d.replace('\t', ' ')
env_info['LSB'] = [lsb_v, lsb_d]
env_info['Python'] = sys.version.replace('\n', '')
compiled_with_cuda = paddle.fluid.is_compiled_with_cuda()
env_info['Paddle compiled with cuda'] = compiled_with_cuda
if compiled_with_cuda:
cuda_home = _find_cuda_home()
env_info['cuda home'] = cuda_home
env_info['nvcc'] = _get_nvcc_info(cuda_home)
gpu_nums = fluid.core.get_cuda_device_count()
env_info['GPUs used'] = gpu_nums
env_info['CUDA_VISIBLE_DEVICES'] = os.environ.get(
'CUDA_VISIBLE_DEVICES')
env_info['GPU'] = _get_gpu_info()
gcc = subprocess.check_output(['gcc', '--version']).decode()
gcc = gcc.strip().split('\n')[0]
env_info['gcc'] = gcc
env_info['Paddle'] = paddle.__version__
env_info['OpenCV'] = cv2.__version__
return env_info
if __name__ == '__main__':
env_info = get_environ_info()
for k, v in env_info.items():
print('{}: {}'.format(k, v))
......@@ -72,7 +72,7 @@ def parse_args():
def main(args):
env_info = get_environ_info()
places = fluid.CUDAPlace(ParallelEnv().dev_id) \
if env_info['place'] == 'cuda' and fluid.is_compiled_with_cuda() \
if env_info['Paddle compiled with cuda'] and env_info['GPUs used'] \
else fluid.CPUPlace()
if args.dataset not in DATASETS:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册