Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
30e44c5e
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
287
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
30e44c5e
编写于
9月 22, 2020
作者:
C
chenguowei01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update unet.py to 2.0beta
上级
a3bfb074
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
44 addition
and
74 deletion
+44
-74
dygraph/paddleseg/models/unet.py
dygraph/paddleseg/models/unet.py
+43
-73
dygraph/train.py
dygraph/train.py
+1
-1
未找到文件。
dygraph/paddleseg/models/unet.py
浏览文件 @
30e44c5e
...
@@ -14,15 +14,19 @@
...
@@ -14,15 +14,19 @@
import
os
import
os
import
paddle.fluid
as
fluid
import
paddle
from
paddle.fluid.dygraph
import
Conv2D
,
Pool2D
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
Conv2d
from
paddle.nn
import
SyncBatchNorm
as
BatchNorm
from
paddle.nn
import
SyncBatchNorm
as
BatchNorm
from
paddleseg.cvlibs
import
manager
from
paddleseg.cvlibs
import
manager
from
paddleseg
import
utils
from
paddleseg
import
utils
from
paddleseg.models.common
import
layer_libs
class
UNet
(
fluid
.
dygraph
.
Layer
):
@
manager
.
MODELS
.
add_component
class
UNet
(
nn
.
Layer
):
"""
"""
U-Net: Convolutional Networks for Biomedical Image Segmentation.
U-Net: Convolutional Networks for Biomedical Image Segmentation.
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
...
@@ -35,62 +39,35 @@ class UNet(fluid.dygraph.Layer):
...
@@ -35,62 +39,35 @@ class UNet(fluid.dygraph.Layer):
def
__init__
(
self
,
num_classes
,
model_pretrained
=
None
,
ignore_index
=
255
):
def
__init__
(
self
,
num_classes
,
model_pretrained
=
None
,
ignore_index
=
255
):
super
(
UNet
,
self
).
__init__
()
super
(
UNet
,
self
).
__init__
()
self
.
model_pretrained
=
model_pretrained
self
.
ignore_index
=
ignore_index
self
.
encode
=
UnetEncoder
()
self
.
encode
=
UnetEncoder
()
self
.
decode
=
UnetDecode
()
self
.
decode
=
UnetDecode
()
self
.
get_logit
=
GetLogit
(
64
,
num_classes
)
self
.
get_logit
=
GetLogit
(
64
,
num_classes
)
self
.
ignore_index
=
ignore_index
self
.
EPS
=
1e-5
self
.
EPS
=
1e-5
self
.
init_weight
(
model_pretrained
)
self
.
init_weight
()
def
forward
(
self
,
x
,
label
=
None
):
def
forward
(
self
,
x
,
label
=
None
):
encode_data
,
short_cuts
=
self
.
encode
(
x
)
encode_data
,
short_cuts
=
self
.
encode
(
x
)
decode_data
=
self
.
decode
(
encode_data
,
short_cuts
)
decode_data
=
self
.
decode
(
encode_data
,
short_cuts
)
logit
=
self
.
get_logit
(
decode_data
)
logit
=
self
.
get_logit
(
decode_data
)
if
self
.
training
:
return
[
logit
]
return
self
.
_get_loss
(
logit
,
label
)
else
:
def
init_weight
(
self
):
score_map
=
fluid
.
layers
.
softmax
(
logit
,
axis
=
1
)
score_map
=
fluid
.
layers
.
transpose
(
score_map
,
[
0
,
2
,
3
,
1
])
pred
=
fluid
.
layers
.
argmax
(
score_map
,
axis
=
3
)
pred
=
fluid
.
layers
.
unsqueeze
(
pred
,
axes
=
[
3
])
return
pred
,
score_map
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
"""
Initialize the parameters of model parts.
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
"""
if
pretrained_model
is
not
None
:
if
self
.
model_pretrained
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
if
os
.
path
.
exists
(
self
.
model_pretrained
):
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
utils
.
load_pretrained_model
(
self
,
self
.
model_pretrained
)
else
:
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
self
.
model_pretrained
))
def
_get_loss
(
self
,
logit
,
label
):
logit
=
fluid
.
layers
.
transpose
(
logit
,
[
0
,
2
,
3
,
1
])
class
UnetEncoder
(
nn
.
Layer
):
label
=
fluid
.
layers
.
transpose
(
label
,
[
0
,
2
,
3
,
1
])
mask
=
label
!=
self
.
ignore_index
mask
=
fluid
.
layers
.
cast
(
mask
,
'float32'
)
loss
,
probs
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logit
,
label
,
ignore_index
=
self
.
ignore_index
,
return_softmax
=
True
,
axis
=-
1
)
loss
=
loss
*
mask
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
/
(
fluid
.
layers
.
mean
(
mask
)
+
self
.
EPS
)
label
.
stop_gradient
=
True
mask
.
stop_gradient
=
True
return
avg_loss
class
UnetEncoder
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
):
super
(
UnetEncoder
,
self
).
__init__
()
super
(
UnetEncoder
,
self
).
__init__
()
self
.
double_conv
=
DoubleConv
(
3
,
64
)
self
.
double_conv
=
DoubleConv
(
3
,
64
)
...
@@ -113,7 +90,7 @@ class UnetEncoder(fluid.dygraph.Layer):
...
@@ -113,7 +90,7 @@ class UnetEncoder(fluid.dygraph.Layer):
return
x
,
short_cuts
return
x
,
short_cuts
class
UnetDecode
(
fluid
.
dygraph
.
Layer
):
class
UnetDecode
(
nn
.
Layer
):
def
__init__
(
self
):
def
__init__
(
self
):
super
(
UnetDecode
,
self
).
__init__
()
super
(
UnetDecode
,
self
).
__init__
()
self
.
up1
=
Up
(
512
,
256
)
self
.
up1
=
Up
(
512
,
256
)
...
@@ -129,20 +106,20 @@ class UnetDecode(fluid.dygraph.Layer):
...
@@ -129,20 +106,20 @@ class UnetDecode(fluid.dygraph.Layer):
return
x
return
x
class
DoubleConv
(
fluid
.
dygraph
.
Layer
):
class
DoubleConv
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
):
def
__init__
(
self
,
num_channels
,
num_filters
):
super
(
DoubleConv
,
self
).
__init__
()
super
(
DoubleConv
,
self
).
__init__
()
self
.
conv0
=
Conv2
D
(
self
.
conv0
=
Conv2
d
(
num
_channels
=
num_channels
,
in
_channels
=
num_channels
,
num_filter
s
=
num_filters
,
out_channel
s
=
num_filters
,
filter
_size
=
3
,
kernel
_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
)
padding
=
1
)
self
.
bn0
=
BatchNorm
(
num_filters
)
self
.
bn0
=
BatchNorm
(
num_filters
)
self
.
conv1
=
Conv2
D
(
self
.
conv1
=
Conv2
d
(
num
_channels
=
num_filters
,
in
_channels
=
num_filters
,
num_filter
s
=
num_filters
,
out_channel
s
=
num_filters
,
filter
_size
=
3
,
kernel
_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
)
padding
=
1
)
self
.
bn1
=
BatchNorm
(
num_filters
)
self
.
bn1
=
BatchNorm
(
num_filters
)
...
@@ -150,18 +127,17 @@ class DoubleConv(fluid.dygraph.Layer):
...
@@ -150,18 +127,17 @@ class DoubleConv(fluid.dygraph.Layer):
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
x
=
self
.
conv0
(
x
)
x
=
self
.
conv0
(
x
)
x
=
self
.
bn0
(
x
)
x
=
self
.
bn0
(
x
)
x
=
fluid
.
layers
.
relu
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
conv1
(
x
)
x
=
self
.
conv1
(
x
)
x
=
self
.
bn1
(
x
)
x
=
self
.
bn1
(
x
)
x
=
fluid
.
layers
.
relu
(
x
)
x
=
F
.
relu
(
x
)
return
x
return
x
class
Down
(
fluid
.
dygraph
.
Layer
):
class
Down
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
):
def
__init__
(
self
,
num_channels
,
num_filters
):
super
(
Down
,
self
).
__init__
()
super
(
Down
,
self
).
__init__
()
self
.
max_pool
=
Pool2D
(
self
.
max_pool
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
2
,
pool_padding
=
0
)
self
.
double_conv
=
DoubleConv
(
num_channels
,
num_filters
)
self
.
double_conv
=
DoubleConv
(
num_channels
,
num_filters
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
...
@@ -170,34 +146,28 @@ class Down(fluid.dygraph.Layer):
...
@@ -170,34 +146,28 @@ class Down(fluid.dygraph.Layer):
return
x
return
x
class
Up
(
fluid
.
dygraph
.
Layer
):
class
Up
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
):
def
__init__
(
self
,
num_channels
,
num_filters
):
super
(
Up
,
self
).
__init__
()
super
(
Up
,
self
).
__init__
()
self
.
double_conv
=
DoubleConv
(
2
*
num_channels
,
num_filters
)
self
.
double_conv
=
DoubleConv
(
2
*
num_channels
,
num_filters
)
def
forward
(
self
,
x
,
short_cut
):
def
forward
(
self
,
x
,
short_cut
):
short_cut_shape
=
fluid
.
layers
.
shape
(
short_cut
)
x
=
F
.
resize_bilinear
(
x
,
short_cut
.
shape
[
2
:])
x
=
fluid
.
layers
.
resize_bilinear
(
x
,
short_cut_shape
[
2
:])
x
=
paddle
.
concat
([
x
,
short_cut
],
axis
=
1
)
x
=
fluid
.
layers
.
concat
([
x
,
short_cut
],
axis
=
1
)
x
=
self
.
double_conv
(
x
)
x
=
self
.
double_conv
(
x
)
return
x
return
x
class
GetLogit
(
fluid
.
dygraph
.
Layer
):
class
GetLogit
(
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_classes
):
def
__init__
(
self
,
num_channels
,
num_classes
):
super
(
GetLogit
,
self
).
__init__
()
super
(
GetLogit
,
self
).
__init__
()
self
.
conv
=
Conv2
D
(
self
.
conv
=
Conv2
d
(
num
_channels
=
num_channels
,
in
_channels
=
num_channels
,
num_filter
s
=
num_classes
,
out_channel
s
=
num_classes
,
filter
_size
=
3
,
kernel
_size
=
3
,
stride
=
1
,
stride
=
1
,
padding
=
1
)
padding
=
1
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
conv
(
x
)
return
x
return
x
@
manager
.
MODELS
.
add_component
def
unet
(
*
args
,
**
kwargs
):
return
UNet
(
*
args
,
**
kwargs
)
dygraph/train.py
浏览文件 @
30e44c5e
...
@@ -87,7 +87,7 @@ def parse_args():
...
@@ -87,7 +87,7 @@ def parse_args():
def
main
(
args
):
def
main
(
args
):
env_info
=
get_environ_info
()
env_info
=
get_environ_info
()
info
=
[
'{}: {}'
.
format
(
k
,
v
)
for
k
,
v
in
env_info
.
items
()]
info
=
[
'{}: {}'
.
format
(
k
,
v
)
for
k
,
v
in
env_info
.
items
()]
info
=
'
\n
'
.
join
([
'
\n
'
,
format
(
'Environment Information'
,
'-^48s'
)]
+
info
+
info
=
'
\n
'
.
join
([
''
,
format
(
'Environment Information'
,
'-^48s'
)]
+
info
+
[
'-'
*
48
])
[
'-'
*
48
])
logger
.
info
(
info
)
logger
.
info
(
info
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录