Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
a3bfb074
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a3bfb074
编写于
9月 22, 2020
作者:
C
chenguowei01
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/PaddleSeg
into dygraph
上级
fad18563
23d69271
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
444 addition
and
126 deletion
+444
-126
dygraph/paddleseg/datasets/ade.py
dygraph/paddleseg/datasets/ade.py
+3
-3
dygraph/paddleseg/datasets/optic_disc_seg.py
dygraph/paddleseg/datasets/optic_disc_seg.py
+2
-2
dygraph/paddleseg/datasets/voc.py
dygraph/paddleseg/datasets/voc.py
+3
-3
dygraph/paddleseg/env.py
dygraph/paddleseg/env.py
+50
-0
dygraph/paddleseg/models/danet.py
dygraph/paddleseg/models/danet.py
+217
-0
dygraph/paddleseg/models/ocrnet.py
dygraph/paddleseg/models/ocrnet.py
+132
-110
dygraph/paddleseg/utils/utils.py
dygraph/paddleseg/utils/utils.py
+28
-1
dygraph/train.py
dygraph/train.py
+4
-3
dygraph/val.py
dygraph/val.py
+5
-4
未找到文件。
dygraph/paddleseg/datasets/ade.py
浏览文件 @
a3bfb074
...
...
@@ -17,12 +17,12 @@ import os
import
numpy
as
np
from
PIL
import
Image
import
paddleseg.env
as
segenv
from
.dataset
import
Dataset
from
paddleseg.utils.download
import
download_file_and_uncompress
from
paddleseg.cvlibs
import
manager
from
paddleseg.transforms
import
Compose
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset'
)
URL
=
"http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip"
...
...
@@ -61,8 +61,8 @@ class ADE20K(Dataset):
"`dataset_root` not set and auto download disabled."
)
self
.
dataset_root
=
download_file_and_uncompress
(
url
=
URL
,
savepath
=
DATA_HOME
,
extrapath
=
DATA_HOME
,
savepath
=
segenv
.
DATA_HOME
,
extrapath
=
segenv
.
DATA_HOME
,
extraname
=
'ADEChallengeData2016'
)
elif
not
os
.
path
.
exists
(
self
.
dataset_root
):
raise
Exception
(
'there is not `dataset_root`: {}.'
.
format
(
...
...
dygraph/paddleseg/datasets/optic_disc_seg.py
浏览文件 @
a3bfb074
...
...
@@ -14,12 +14,12 @@
import
os
import
paddleseg.env
as
segenv
from
.dataset
import
Dataset
from
paddleseg.utils.download
import
download_file_and_uncompress
from
paddleseg.cvlibs
import
manager
from
paddleseg.transforms
import
Compose
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset'
)
URL
=
"https://paddleseg.bj.bcebos.com/dataset/optic_disc_seg.zip"
...
...
@@ -49,7 +49,7 @@ class OpticDiscSeg(Dataset):
raise
Exception
(
"`data_root` not set and auto download disabled."
)
self
.
dataset_root
=
download_file_and_uncompress
(
url
=
URL
,
savepath
=
DATA_HOME
,
extrapath
=
DATA_HOME
)
url
=
URL
,
savepath
=
segenv
.
DATA_HOME
,
extrapath
=
segenv
.
DATA_HOME
)
elif
not
os
.
path
.
exists
(
self
.
dataset_root
):
raise
Exception
(
'there is not `dataset_root`: {}.'
.
format
(
self
.
dataset_root
))
...
...
dygraph/paddleseg/datasets/voc.py
浏览文件 @
a3bfb074
...
...
@@ -14,12 +14,12 @@
import
os
import
paddleseg.env
as
segenv
from
.dataset
import
Dataset
from
paddleseg.utils.download
import
download_file_and_uncompress
from
paddleseg.cvlibs
import
manager
from
paddleseg.transforms
import
Compose
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset'
)
URL
=
"http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar"
...
...
@@ -59,8 +59,8 @@ class PascalVOC(Dataset):
"`dataset_root` not set and auto download disabled."
)
self
.
dataset_root
=
download_file_and_uncompress
(
url
=
URL
,
savepath
=
DATA_HOME
,
extrapath
=
DATA_HOME
,
savepath
=
segenv
.
DATA_HOME
,
extrapath
=
segenv
.
DATA_HOME
,
extraname
=
'VOCdevkit'
)
elif
not
os
.
path
.
exists
(
self
.
dataset_root
):
raise
Exception
(
'there is not `dataset_root`: {}.'
.
format
(
...
...
dygraph/paddleseg/env.py
0 → 100644
浏览文件 @
a3bfb074
# coding:utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
shutil
from
paddleseg.utils
import
logger
def
_get_user_home
():
return
os
.
path
.
expanduser
(
'~'
)
def
_get_seg_home
():
if
'SEG_HOME'
in
os
.
environ
:
home_path
=
os
.
environ
[
'SEG_HOME'
]
if
os
.
path
.
exists
(
home_path
):
if
os
.
path
.
isdir
(
home_path
):
return
home_path
else
:
logger
.
warning
(
'SEG_HOME {} is a file!'
.
format
(
home_path
))
else
:
return
home_path
return
os
.
path
.
join
(
_get_user_home
(),
'.paddleseg'
)
def
_get_sub_home
(
directory
):
home
=
os
.
path
.
join
(
_get_seg_home
(),
directory
)
if
not
os
.
path
.
exists
(
home
):
os
.
makedirs
(
home
)
return
home
USER_HOME
=
_get_user_home
()
SEG_HOME
=
_get_seg_home
()
DATA_HOME
=
_get_sub_home
(
'dataset'
)
TMP_HOME
=
_get_sub_home
(
'tmp'
)
PRETRAINED_MODEL_HOME
=
_get_sub_home
(
'pretrained_model'
)
dygraph/paddleseg/models/danet.py
0 → 100644
浏览文件 @
a3bfb074
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddleseg.utils
import
utils
from
paddleseg.cvlibs
import
manager
,
param_init
from
paddleseg.models.common.layer_libs
import
ConvBNReLU
class
PAM
(
nn
.
Layer
):
"""Position attention module"""
def
__init__
(
self
,
in_channels
):
super
(
PAM
,
self
).
__init__
()
mid_channels
=
in_channels
//
8
self
.
query_conv
=
nn
.
Conv2d
(
in_channels
,
mid_channels
,
1
,
1
)
self
.
key_conv
=
nn
.
Conv2d
(
in_channels
,
mid_channels
,
1
,
1
)
self
.
value_conv
=
nn
.
Conv2d
(
in_channels
,
in_channels
,
1
,
1
)
self
.
gamma
=
self
.
create_parameter
(
shape
=
[
1
],
dtype
=
'float32'
,
default_initializer
=
nn
.
initializer
.
Constant
(
0
))
def
forward
(
self
,
x
):
n
,
_
,
h
,
w
=
x
.
shape
# query: n, h * w, c1
query
=
self
.
query_conv
(
x
)
query
=
paddle
.
reshape
(
query
,
(
n
,
-
1
,
h
*
w
))
query
=
paddle
.
transpose
(
query
,
(
0
,
2
,
1
))
# key: n, c1, h * w
key
=
self
.
key_conv
(
x
)
key
=
paddle
.
reshape
(
key
,
(
n
,
-
1
,
h
*
w
))
# sim: n, h * w, h * w
sim
=
paddle
.
bmm
(
query
,
key
)
sim
=
F
.
softmax
(
sim
,
axis
=-
1
)
value
=
self
.
value_conv
(
x
)
value
=
paddle
.
reshape
(
value
,
(
n
,
-
1
,
h
*
w
))
sim
=
paddle
.
transpose
(
sim
,
(
0
,
2
,
1
))
# feat: from (n, c2, h * w) -> (n, c2, h, w)
feat
=
paddle
.
bmm
(
value
,
sim
)
feat
=
paddle
.
reshape
(
feat
,
(
n
,
-
1
,
h
,
w
))
out
=
self
.
gamma
*
feat
+
x
return
out
class
CAM
(
nn
.
Layer
):
"""Channel attention module"""
def
__init__
(
self
):
super
(
CAM
,
self
).
__init__
()
self
.
gamma
=
self
.
create_parameter
(
shape
=
[
1
],
dtype
=
'float32'
,
default_initializer
=
nn
.
initializer
.
Constant
(
0
))
def
forward
(
self
,
x
):
n
,
c
,
h
,
w
=
x
.
shape
# query: n, c, h * w
query
=
paddle
.
reshape
(
x
,
(
n
,
c
,
h
*
w
))
# key: n, h * w, c
key
=
paddle
.
reshape
(
x
,
(
n
,
c
,
h
*
w
))
key
=
paddle
.
transpose
(
key
,
(
0
,
2
,
1
))
# sim: n, c, c
sim
=
paddle
.
bmm
(
query
,
key
)
# The danet author claims that this can avoid gradient divergence
sim
=
paddle
.
max
(
sim
,
axis
=-
1
,
keepdim
=
True
).
expand_as
(
sim
)
-
sim
sim
=
F
.
softmax
(
sim
,
axis
=-
1
)
# feat: from (n, c, h * w) to (n, c, h, w)
value
=
paddle
.
reshape
(
x
,
(
n
,
c
,
h
*
w
))
feat
=
paddle
.
bmm
(
sim
,
value
)
feat
=
paddle
.
reshape
(
feat
,
(
n
,
c
,
h
,
w
))
out
=
self
.
gamma
*
feat
+
x
return
out
class
DAHead
(
nn
.
Layer
):
"""
The Dual attention head.
Args:
num_classes(int): the unique number of target classes.
in_channels(tuple): the number of input channels.
"""
def
__init__
(
self
,
num_classes
,
in_channels
=
None
):
super
(
DAHead
,
self
).
__init__
()
in_channels
=
in_channels
[
-
1
]
inter_channels
=
in_channels
//
4
self
.
channel_conv
=
ConvBNReLU
(
in_channels
,
inter_channels
,
3
,
padding
=
1
)
self
.
position_conv
=
ConvBNReLU
(
in_channels
,
inter_channels
,
3
,
padding
=
1
)
self
.
pam
=
PAM
(
inter_channels
)
self
.
cam
=
CAM
()
self
.
conv1
=
ConvBNReLU
(
inter_channels
,
inter_channels
,
3
,
padding
=
1
)
self
.
conv2
=
ConvBNReLU
(
inter_channels
,
inter_channels
,
3
,
padding
=
1
)
self
.
aux_head_pam
=
nn
.
Sequential
(
nn
.
Dropout2d
(
0.1
),
nn
.
Conv2d
(
inter_channels
,
num_classes
,
1
))
self
.
aux_head_cam
=
nn
.
Sequential
(
nn
.
Dropout2d
(
0.1
),
nn
.
Conv2d
(
inter_channels
,
num_classes
,
1
))
self
.
cls_head
=
nn
.
Sequential
(
nn
.
Dropout2d
(
0.1
),
nn
.
Conv2d
(
inter_channels
,
num_classes
,
1
))
self
.
init_weight
()
def
forward
(
self
,
x
,
label
=
None
):
feats
=
x
[
-
1
]
channel_feats
=
self
.
channel_conv
(
feats
)
channel_feats
=
self
.
cam
(
channel_feats
)
channel_feats
=
self
.
conv1
(
channel_feats
)
cam_head
=
self
.
aux_head_cam
(
channel_feats
)
position_feats
=
self
.
position_conv
(
feats
)
position_feats
=
self
.
pam
(
position_feats
)
position_feats
=
self
.
conv2
(
position_feats
)
pam_head
=
self
.
aux_head_pam
(
position_feats
)
feats_sum
=
position_feats
+
channel_feats
cam_logit
=
self
.
aux_head_cam
(
channel_feats
)
pam_logit
=
self
.
aux_head_cam
(
position_feats
)
logit
=
self
.
cls_head
(
feats_sum
)
return
[
logit
,
cam_logit
,
pam_logit
]
def
init_weight
(
self
):
"""Initialize the parameters of model parts."""
for
sublayer
in
self
.
sublayers
():
if
isinstance
(
sublayer
,
nn
.
Conv2d
):
param_init
.
normal_init
(
sublayer
.
weight
,
scale
=
0.001
)
elif
isinstance
(
sublayer
,
nn
.
SyncBatchNorm
):
param_init
.
constant_init
(
sublayer
.
weight
,
value
=
1
)
param_init
.
constant_init
(
sublayer
.
bias
,
value
=
0
)
@
manager
.
MODELS
.
add_component
class
DANet
(
nn
.
Layer
):
"""
The DANet implementation based on PaddlePaddle.
The original article refers to
Fu, jun, et al. "Dual Attention Network for Scene Segmentation"
(https://arxiv.org/pdf/1809.02983.pdf)
Args:
num_classes(int): the unique number of target classes.
backbone(Paddle.nn.Layer): backbone network.
pretrained(str): the path or url of pretrained model. Default to None.
backbone_indices(tuple): values in the tuple indicate the indices of output of backbone.
Only the last indice is used.
"""
def
__init__
(
self
,
num_classes
,
backbone
,
pretrained
=
None
,
backbone_indices
=
None
):
super
(
DANet
,
self
).
__init__
()
self
.
backbone
=
backbone
self
.
backbone_indices
=
backbone_indices
in_channels
=
[
self
.
backbone
.
channels
[
i
]
for
i
in
backbone_indices
]
self
.
head
=
DAHead
(
num_classes
=
num_classes
,
in_channels
=
in_channels
)
self
.
init_weight
(
pretrained
)
def
forward
(
self
,
x
,
label
=
None
):
feats
=
self
.
backbone
(
x
)
feats
=
[
feats
[
i
]
for
i
in
self
.
backbone_indices
]
preds
=
self
.
head
(
feats
,
label
)
preds
=
[
F
.
resize_bilinear
(
pred
,
x
.
shape
[
2
:])
for
pred
in
preds
]
return
preds
def
init_weight
(
self
,
pretrained
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained ([str], optional): the path of pretrained model.. Defaults to None.
"""
if
pretrained
is
not
None
:
if
os
.
path
.
exists
(
pretrained
):
utils
.
load_pretrained_model
(
self
,
pretrained
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained
))
dygraph/paddleseg/models/ocrnet.py
浏览文件 @
a3bfb074
...
...
@@ -14,36 +14,41 @@
import
os
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
Sequential
,
Conv2D
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddleseg.cvlibs
import
manager
from
paddleseg.models.common.layer_libs
import
ConvBnRelu
from
paddleseg
import
utils
from
paddleseg.cvlibs
import
manager
,
param_init
from
paddleseg.models.common.layer_libs
import
ConvBNReLU
,
AuxLayer
class
SpatialGatherBlock
(
fluid
.
dygraph
.
Layer
):
class
SpatialGatherBlock
(
nn
.
Layer
):
"""Aggregation layer to compute the pixel-region representation"""
def
forward
(
self
,
pixels
,
regions
):
n
,
c
,
h
,
w
=
pixels
.
shape
_
,
k
,
_
,
_
=
regions
.
shape
# pixels: from (n, c, h, w) to (n, h*w, c)
pixels
=
fluid
.
layers
.
reshape
(
pixels
,
(
n
,
c
,
h
*
w
))
pixels
=
fluid
.
layers
.
transpose
(
pixels
,
(
0
,
2
,
1
))
pixels
=
paddle
.
reshape
(
pixels
,
(
n
,
c
,
h
*
w
))
pixels
=
paddle
.
transpose
(
pixels
,
(
0
,
2
,
1
))
# regions: from (n, k, h, w) to (n, k, h*w)
regions
=
fluid
.
layers
.
reshape
(
regions
,
(
n
,
k
,
h
*
w
))
regions
=
fluid
.
layers
.
softmax
(
regions
,
axis
=
2
)
regions
=
paddle
.
reshape
(
regions
,
(
n
,
k
,
h
*
w
))
regions
=
F
.
softmax
(
regions
,
axis
=
2
)
# feats: from (n, k, c) to (n, c, k, 1)
feats
=
fluid
.
layers
.
matmul
(
regions
,
pixels
)
feats
=
fluid
.
layers
.
transpose
(
feats
,
(
0
,
2
,
1
))
feats
=
fluid
.
layers
.
unsqueeze
(
feats
,
axes
=
[
-
1
]
)
feats
=
paddle
.
bmm
(
regions
,
pixels
)
feats
=
paddle
.
transpose
(
feats
,
(
0
,
2
,
1
))
feats
=
paddle
.
unsqueeze
(
feats
,
axis
=-
1
)
return
feats
class
SpatialOCRModule
(
fluid
.
dygraph
.
Layer
):
class
SpatialOCRModule
(
nn
.
Layer
):
"""Aggregate the global object representation to update the representation for each pixel"""
def
__init__
(
self
,
in_channels
,
key_channels
,
...
...
@@ -53,163 +58,180 @@ class SpatialOCRModule(fluid.dygraph.Layer):
self
.
attention_block
=
ObjectAttentionBlock
(
in_channels
,
key_channels
)
self
.
dropout_rate
=
dropout_rate
self
.
conv1x1
=
Conv2D
(
2
*
in_channels
,
out_channels
,
1
)
self
.
conv1x1
=
nn
.
Sequential
(
nn
.
Conv2d
(
2
*
in_channels
,
out_channels
,
1
),
nn
.
Dropout2d
(
0.1
))
def
forward
(
self
,
pixels
,
regions
):
context
=
self
.
attention_block
(
pixels
,
regions
)
feats
=
fluid
.
layers
.
concat
([
context
,
pixels
],
axis
=
1
)
feats
=
paddle
.
concat
([
context
,
pixels
],
axis
=
1
)
feats
=
self
.
conv1x1
(
feats
)
feats
=
fluid
.
layers
.
dropout
(
feats
,
self
.
dropout_rate
)
return
feats
class
ObjectAttentionBlock
(
fluid
.
dygraph
.
Layer
):
class
ObjectAttentionBlock
(
nn
.
Layer
):
"""A self-attention module."""
def
__init__
(
self
,
in_channels
,
key_channels
):
super
(
ObjectAttentionBlock
,
self
).
__init__
()
self
.
in_channels
=
in_channels
self
.
key_channels
=
key_channels
self
.
f_pixel
=
Sequential
(
ConvB
nRelu
(
in_channels
,
key_channels
,
1
),
ConvB
nRelu
(
key_channels
,
key_channels
,
1
))
self
.
f_pixel
=
nn
.
Sequential
(
ConvB
NReLU
(
in_channels
,
key_channels
,
1
),
ConvB
NReLU
(
key_channels
,
key_channels
,
1
))
self
.
f_object
=
Sequential
(
ConvB
nRelu
(
in_channels
,
key_channels
,
1
),
ConvB
nRelu
(
key_channels
,
key_channels
,
1
))
self
.
f_object
=
nn
.
Sequential
(
ConvB
NReLU
(
in_channels
,
key_channels
,
1
),
ConvB
NReLU
(
key_channels
,
key_channels
,
1
))
self
.
f_down
=
ConvB
nRelu
(
in_channels
,
key_channels
,
1
)
self
.
f_down
=
ConvB
NReLU
(
in_channels
,
key_channels
,
1
)
self
.
f_up
=
ConvB
nRelu
(
key_channels
,
in_channels
,
1
)
self
.
f_up
=
ConvB
NReLU
(
key_channels
,
in_channels
,
1
)
def
forward
(
self
,
x
,
proxy
):
n
,
_
,
h
,
w
=
x
.
shape
# query : from (n, c1, h1, w1) to (n, h1*w1, key_channels)
query
=
self
.
f_pixel
(
x
)
query
=
fluid
.
layers
.
reshape
(
query
,
(
n
,
self
.
key_channels
,
-
1
))
query
=
fluid
.
layers
.
transpose
(
query
,
(
0
,
2
,
1
))
query
=
paddle
.
reshape
(
query
,
(
n
,
self
.
key_channels
,
-
1
))
query
=
paddle
.
transpose
(
query
,
(
0
,
2
,
1
))
# key : from (n, c2, h2, w2) to (n, key_channels, h2*w2)
key
=
self
.
f_object
(
proxy
)
key
=
fluid
.
layers
.
reshape
(
key
,
(
n
,
self
.
key_channels
,
-
1
))
key
=
paddle
.
reshape
(
key
,
(
n
,
self
.
key_channels
,
-
1
))
# value : from (n, c2, h2, w2) to (n, h2*w2, key_channels)
value
=
self
.
f_down
(
proxy
)
value
=
fluid
.
layers
.
reshape
(
value
,
(
n
,
self
.
key_channels
,
-
1
))
value
=
fluid
.
layers
.
transpose
(
value
,
(
0
,
2
,
1
))
value
=
paddle
.
reshape
(
value
,
(
n
,
self
.
key_channels
,
-
1
))
value
=
paddle
.
transpose
(
value
,
(
0
,
2
,
1
))
# sim_map (n, h1*w1, h2*w2)
sim_map
=
fluid
.
layers
.
matmul
(
query
,
key
)
sim_map
=
paddle
.
bmm
(
query
,
key
)
sim_map
=
(
self
.
key_channels
**-
.
5
)
*
sim_map
sim_map
=
fluid
.
layers
.
softmax
(
sim_map
,
axis
=-
1
)
sim_map
=
F
.
softmax
(
sim_map
,
axis
=-
1
)
# context from (n, h1*w1, key_channels) to (n , out_channels, h1, w1)
context
=
fluid
.
layers
.
matmul
(
sim_map
,
value
)
context
=
fluid
.
layers
.
transpose
(
context
,
(
0
,
2
,
1
))
context
=
fluid
.
layers
.
reshape
(
context
,
(
n
,
self
.
key_channels
,
h
,
w
))
context
=
paddle
.
bmm
(
sim_map
,
value
)
context
=
paddle
.
transpose
(
context
,
(
0
,
2
,
1
))
context
=
paddle
.
reshape
(
context
,
(
n
,
self
.
key_channels
,
h
,
w
))
context
=
self
.
f_up
(
context
)
return
context
@
manager
.
MODELS
.
add_component
class
OCRNet
(
fluid
.
dygraph
.
Layer
):
class
OCRHead
(
nn
.
Layer
):
"""
The Object contextual representation head.
Args:
num_classes(int): the unique number of target classes.
in_channels(tuple): the number of input channels.
ocr_mid_channels(int): the number of middle channels in OCRHead.
ocr_key_channels(int): the number of key channels in ObjectAttentionBlock.
"""
def
__init__
(
self
,
num_classes
,
backbone
,
model_pretrained
=
None
,
in_channels
=
None
,
ocr_mid_channels
=
512
,
ocr_key_channels
=
256
,
ignore_index
=
255
):
super
(
OCRNet
,
self
).
__init__
()
ocr_key_channels
=
256
):
super
(
OCRHead
,
self
).
__init__
()
self
.
ignore_index
=
ignore_index
self
.
num_classes
=
num_classes
self
.
EPS
=
1e-5
self
.
backbone
=
backbone
self
.
spatial_gather
=
SpatialGatherBlock
()
self
.
spatial_ocr
=
SpatialOCRModule
(
ocr_mid_channels
,
ocr_key_channels
,
ocr_mid_channels
)
self
.
conv3x3_ocr
=
ConvBnRelu
(
in_channels
,
ocr_mid_channels
,
3
,
padding
=
1
)
self
.
cls_head
=
Conv2D
(
ocr_mid_channels
,
self
.
num_classes
,
1
)
self
.
aux_head
=
Sequential
(
ConvBnRelu
(
in_channels
,
in_channels
,
3
,
padding
=
1
),
Conv2D
(
in_channels
,
self
.
num_classes
,
1
))
self
.
indices
=
[
-
2
,
-
1
]
if
len
(
in_channels
)
>
1
else
[
-
1
,
-
1
]
self
.
init_weight
(
model_pretrained
)
self
.
conv3x3_ocr
=
ConvBNReLU
(
in_channels
[
self
.
indices
[
1
]],
ocr_mid_channels
,
3
,
padding
=
1
)
self
.
cls_head
=
nn
.
Conv2d
(
ocr_mid_channels
,
self
.
num_classes
,
1
)
self
.
aux_head
=
AuxLayer
(
in_channels
[
self
.
indices
[
0
]],
in_channels
[
self
.
indices
[
0
]],
self
.
num_classes
)
self
.
init_weight
()
def
forward
(
self
,
x
,
label
=
None
):
feat
s
=
self
.
backbone
(
x
)
feat
_shallow
,
feat_deep
=
x
[
self
.
indices
[
0
]],
x
[
self
.
indices
[
1
]]
soft_regions
=
self
.
aux_head
(
feat
s
)
pixels
=
self
.
conv3x3_ocr
(
feat
s
)
soft_regions
=
self
.
aux_head
(
feat
_shallow
)
pixels
=
self
.
conv3x3_ocr
(
feat
_deep
)
object_regions
=
self
.
spatial_gather
(
pixels
,
soft_regions
)
ocr
=
self
.
spatial_ocr
(
pixels
,
object_regions
)
logit
=
self
.
cls_head
(
ocr
)
logit
=
fluid
.
layers
.
resize_bilinear
(
logit
,
x
.
shape
[
2
:])
if
self
.
training
:
soft_regions
=
fluid
.
layers
.
resize_bilinear
(
soft_regions
,
x
.
shape
[
2
:])
cls_loss
=
self
.
_get_loss
(
logit
,
label
)
aux_loss
=
self
.
_get_loss
(
soft_regions
,
label
)
return
cls_loss
+
0.4
*
aux_loss
score_map
=
fluid
.
layers
.
softmax
(
logit
,
axis
=
1
)
score_map
=
fluid
.
layers
.
transpose
(
score_map
,
[
0
,
2
,
3
,
1
])
pred
=
fluid
.
layers
.
argmax
(
score_map
,
axis
=
3
)
pred
=
fluid
.
layers
.
unsqueeze
(
pred
,
axes
=
[
3
])
return
pred
,
score_map
def
init_weight
(
self
,
pretrained_model
=
None
):
return
[
logit
,
soft_regions
]
def
init_weight
(
self
):
"""Initialize the parameters of model parts."""
for
sublayer
in
self
.
sublayers
():
if
isinstance
(
sublayer
,
nn
.
Conv2d
):
param_init
.
normal_init
(
sublayer
.
weight
,
scale
=
0.001
)
elif
isinstance
(
sublayer
,
nn
.
SyncBatchNorm
):
param_init
.
constant_init
(
sublayer
.
weight
,
value
=
1
)
param_init
.
constant_init
(
sublayer
.
bias
,
value
=
0
)
@
manager
.
MODELS
.
add_component
class
OCRNet
(
nn
.
Layer
):
"""
The OCRNet implementation based on PaddlePaddle.
The original article refers to
Yuan, Yuhui, et al. "Object-Contextual Representations for Semantic Segmentation"
(https://arxiv.org/pdf/1909.11065.pdf)
Args:
num_classes(int): the unique number of target classes.
backbone(Paddle.nn.Layer): backbone network.
pretrained(str): the path or url of pretrained model. Default to None.
backbone_indices(tuple): two values in the tuple indicate the indices of output of backbone.
the first index will be taken as a deep-supervision feature in auxiliary layer;
the second one will be taken as input of pixel representation.
ocr_mid_channels(int): the number of middle channels in OCRHead.
ocr_key_channels(int): the number of key channels in ObjectAttentionBlock.
"""
def
__init__
(
self
,
num_classes
,
backbone
,
pretrained
=
None
,
backbone_indices
=
None
,
ocr_mid_channels
=
512
,
ocr_key_channels
=
256
):
super
(
OCRNet
,
self
).
__init__
()
self
.
backbone
=
backbone
self
.
backbone_indices
=
backbone_indices
in_channels
=
[
self
.
backbone
.
channels
[
i
]
for
i
in
backbone_indices
]
self
.
head
=
OCRHead
(
num_classes
=
num_classes
,
in_channels
=
in_channels
,
ocr_mid_channels
=
ocr_mid_channels
,
ocr_key_channels
=
ocr_key_channels
)
self
.
init_weight
(
pretrained
)
def
forward
(
self
,
x
,
label
=
None
):
feats
=
self
.
backbone
(
x
)
feats
=
[
feats
[
i
]
for
i
in
self
.
backbone_indices
]
preds
=
self
.
head
(
feats
,
label
)
preds
=
[
F
.
resize_bilinear
(
pred
,
x
.
shape
[
2
:])
for
pred
in
preds
]
return
preds
def
init_weight
(
self
,
pretrained
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained
_model
([str], optional): the path of pretrained model.. Defaults to None.
pretrained ([str], optional): the path of pretrained model.. Defaults to None.
"""
if
pretrained
_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained
_model
):
utils
.
load_pretrained_model
(
self
,
pretrained
_model
)
if
pretrained
is
not
None
:
if
os
.
path
.
exists
(
pretrained
):
utils
.
load_pretrained_model
(
self
,
pretrained
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
def
_get_loss
(
self
,
logit
,
label
):
"""
compute forward loss of the model
Args:
logit (tensor): the logit of model output
label (tensor): ground truth
Returns:
avg_loss (tensor): forward loss
"""
logit
=
fluid
.
layers
.
transpose
(
logit
,
[
0
,
2
,
3
,
1
])
label
=
fluid
.
layers
.
transpose
(
label
,
[
0
,
2
,
3
,
1
])
mask
=
label
!=
self
.
ignore_index
mask
=
fluid
.
layers
.
cast
(
mask
,
'float32'
)
loss
,
probs
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logit
,
label
,
ignore_index
=
self
.
ignore_index
,
return_softmax
=
True
,
axis
=-
1
)
loss
=
loss
*
mask
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
/
(
fluid
.
layers
.
mean
(
mask
)
+
self
.
EPS
)
label
.
stop_gradient
=
True
mask
.
stop_gradient
=
True
return
avg_loss
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained
))
dygraph/paddleseg/utils/utils.py
浏览文件 @
a3bfb074
...
...
@@ -12,13 +12,28 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
contextlib
import
os
import
numpy
as
np
import
math
import
cv2
import
tempfile
import
paddle.fluid
as
fluid
from
urllib.parse
import
urlparse
,
unquote
from
.
import
logger
import
filelock
import
paddleseg.env
as
segenv
from
paddleseg.utils
import
logger
from
paddleseg.utils.download
import
download_file_and_uncompress
@
contextlib
.
contextmanager
def
generate_tempdir
(
directory
:
str
=
None
,
**
kwargs
):
'''Generate a temporary directory'''
directory
=
segenv
.
TMP_HOME
if
not
directory
else
directory
with
tempfile
.
TemporaryDirectory
(
dir
=
directory
,
**
kwargs
)
as
_dir
:
yield
_dir
def
seconds_to_hms
(
seconds
):
...
...
@@ -32,6 +47,18 @@ def seconds_to_hms(seconds):
def
load_pretrained_model
(
model
,
pretrained_model
):
if
pretrained_model
is
not
None
:
logger
.
info
(
'Load pretrained model from {}'
.
format
(
pretrained_model
))
# download pretrained model from url
if
urlparse
(
pretrained_model
).
netloc
:
pretrained_model
=
unquote
(
pretrained_model
)
savename
=
pretrained_model
.
split
(
'/'
)[
-
1
].
split
(
'.'
)[
0
]
with
generate_tempdir
()
as
_dir
:
with
filelock
.
FileLock
(
os
.
path
.
join
(
segenv
.
TMP_HOME
,
savename
)):
pretrained_model
=
download_file_and_uncompress
(
pretrained_model
,
savepath
=
_dir
,
extrapath
=
segenv
.
PRETRAINED_MODEL_HOME
,
extraname
=
savename
)
if
os
.
path
.
exists
(
pretrained_model
):
ckpt_path
=
os
.
path
.
join
(
pretrained_model
,
'model'
)
try
:
...
...
dygraph/train.py
浏览文件 @
a3bfb074
...
...
@@ -112,9 +112,10 @@ def main(args):
val_dataset
=
cfg
.
val_dataset
if
args
.
do_eval
else
None
losses
=
cfg
.
loss
print
(
'---------------Config Information---------------'
)
print
(
cfg
)
print
(
'------------------------------------------------'
)
msg
=
'
\n
---------------Config Information---------------
\n
'
msg
+=
str
(
cfg
)
msg
+=
'------------------------------------------------'
logger
.
info
(
msg
)
train
(
cfg
.
model
,
...
...
dygraph/val.py
浏览文件 @
a3bfb074
...
...
@@ -19,7 +19,7 @@ from paddle.distributed import ParallelEnv
import
paddleseg
from
paddleseg.cvlibs
import
manager
from
paddleseg.utils
import
get_environ_info
,
Config
from
paddleseg.utils
import
get_environ_info
,
Config
,
logger
from
paddleseg.core
import
evaluate
...
...
@@ -56,9 +56,10 @@ def main(args):
'The verification dataset is not specified in the configuration file.'
)
print
(
'---------------Config Information---------------'
)
print
(
cfg
)
print
(
'------------------------------------------------'
)
msg
=
'
\n
---------------Config Information---------------
\n
'
msg
+=
str
(
cfg
)
msg
+=
'------------------------------------------------'
logger
.
info
(
msg
)
evaluate
(
cfg
.
model
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录