local_test_pet.py 3.9 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from test_utils import download_file_and_uncompress, train, eval, vis, export_model
import os
C
chenguowei01 已提交
17
import argparse
W
wuzewu 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
DATASET_PATH = os.path.join(LOCAL_PATH, "..", "dataset")
MODEL_PATH = os.path.join(LOCAL_PATH, "models")


def download_pet_dataset(savepath, extrapath):
    url = "https://paddleseg.bj.bcebos.com/dataset/mini_pet.zip"
    download_file_and_uncompress(
        url=url, savepath=savepath, extrapath=extrapath)


def download_unet_coco_model(savepath, extrapath):
    url = "https://bj.bcebos.com/v1/paddleseg/models/unet_coco_init.tgz"
    download_file_and_uncompress(
        url=url, savepath=savepath, extrapath=extrapath)


if __name__ == "__main__":
    download_pet_dataset(LOCAL_PATH, DATASET_PATH)
    download_unet_coco_model(LOCAL_PATH, MODEL_PATH)

    model_name = "unet_pet"
    test_model = os.path.join(LOCAL_PATH, "models", "unet_coco_init")
    cfg = os.path.join(LOCAL_PATH, "..", "configs",
                       "{}.yaml".format(model_name))
    freeze_save_dir = os.path.join(LOCAL_PATH, "inference_model", model_name)
    vis_dir = os.path.join(LOCAL_PATH, "visual", model_name)
    saved_model = os.path.join(LOCAL_PATH, "saved_model", model_name)

C
chenguowei01 已提交
48 49 50 51 52 53 54 55 56 57
    parser = argparse.ArgumentParser(description="PaddleSeg loacl test")
    parser.add_argument("--devices",
        dest="devices",
        help="GPU id of running. if more than one, use spacing to separate.",
        nargs="+",
        default=0,
        type=int)
    args = parser.parse_args()

    devices = [str(x) for x in args.devices]
W
wuzewu 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

    train(
        flags=["--cfg", cfg, "--use_gpu", "--log_steps", "10"],
        options=[
            "SOLVER.NUM_EPOCHS", "1", "TRAIN.PRETRAINED_MODEL", test_model,
            "TRAIN.MODEL_SAVE_DIR", saved_model, "DATASET.TRAIN_FILE_LIST",
            os.path.join(DATASET_PATH, "mini_pet", "file_list",
                         "train_list.txt"), "DATASET.VAL_FILE_LIST",
            os.path.join(DATASET_PATH, "mini_pet", "file_list",
                         "val_list.txt"), "DATASET.TEST_FILE_LIST",
            os.path.join(DATASET_PATH, "mini_pet", "file_list",
                         "test_list.txt"), "DATASET.DATA_DIR",
            os.path.join(DATASET_PATH, "mini_pet"), "BATCH_SIZE", "1"
        ],
        devices=devices)

    eval(
        flags=["--cfg", cfg, "--use_gpu"],
        options=[
            "TEST.TEST_MODEL",
            os.path.join(saved_model, "final"), "DATASET.VAL_FILE_LIST",
            os.path.join(DATASET_PATH, "mini_pet", "file_list", "val_list.txt"),
            "DATASET.DATA_DIR",
            os.path.join(DATASET_PATH, "mini_pet")
        ],
        devices=devices)

    vis(flags=["--cfg", cfg, "--use_gpu", "--local_test", "--vis_dir", vis_dir],
        options=[
            "DATASET.TEST_FILE_LIST",
            os.path.join(DATASET_PATH, "mini_pet", "file_list",
                         "test_list.txt"), "DATASET.DATA_DIR",
            os.path.join(DATASET_PATH, "mini_pet"), "TEST.TEST_MODEL",
            os.path.join(saved_model, "final")
        ],
        devices=devices)

    export_model(
        flags=["--cfg", cfg],
        options=[
            "TEST.TEST_MODEL",
            os.path.join(saved_model, "final"), "FREEZE.SAVE_DIR",
            freeze_save_dir
        ],
        devices=devices)