deeplab.py 10.5 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import contextlib
import paddle
import paddle.fluid as fluid
from utils.config import cfg
from models.libs.model_libs import scope, name_scope
from models.libs.model_libs import bn, bn_relu, relu
from models.libs.model_libs import conv
from models.libs.model_libs import separate_conv
from models.backbone.mobilenet_v2 import MobileNetV2 as mobilenet_backbone
from models.backbone.xception import Xception as xception_backbone


def encoder(input):
    # 编码器配置,采用ASPP架构,pooling + 1x1_conv + 三个不同尺度的空洞卷积并行, concat后1x1conv
    # ASPP_WITH_SEP_CONV:默认为真,使用depthwise可分离卷积,否则使用普通卷积
    # OUTPUT_STRIDE: 下采样倍数,8或16,决定aspp_ratios大小
    # aspp_ratios:ASPP模块空洞卷积的采样率

    if cfg.MODEL.DEEPLAB.OUTPUT_STRIDE == 16:
        aspp_ratios = [6, 12, 18]
    elif cfg.MODEL.DEEPLAB.OUTPUT_STRIDE == 8:
        aspp_ratios = [12, 24, 36]
    else:
        raise Exception("deeplab only support stride 8 or 16")

    param_attr = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=None,
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
    with scope('encoder'):
        channel = 256
        with scope("image_pool"):
            if cfg.MODEL.FP16:
                image_avg = fluid.layers.reduce_mean(
                    fluid.layers.cast(input, 'float32'), [2, 3], keep_dim=True)
                image_avg = fluid.layers.cast(image_avg, 'float16')
            else:
                image_avg = fluid.layers.reduce_mean(
                    input, [2, 3], keep_dim=True)
            image_avg = bn_relu(
                conv(
                    image_avg,
                    channel,
                    1,
                    1,
                    groups=1,
                    padding=0,
                    param_attr=param_attr))
            if cfg.MODEL.FP16:
                image_avg = fluid.layers.cast(image_avg, 'float32')
            image_avg = fluid.layers.resize_bilinear(image_avg, input.shape[2:])
            if cfg.MODEL.FP16:
                image_avg = fluid.layers.cast(image_avg, 'float16')
        with scope("aspp0"):
            aspp0 = bn_relu(
                conv(
                    input,
                    channel,
                    1,
                    1,
                    groups=1,
                    padding=0,
                    param_attr=param_attr))
        with scope("aspp1"):
            if cfg.MODEL.DEEPLAB.ASPP_WITH_SEP_CONV:
                aspp1 = separate_conv(
                    input, channel, 1, 3, dilation=aspp_ratios[0], act=relu)
            else:
                aspp1 = bn_relu(
                    conv(
                        input,
                        channel,
                        stride=1,
                        filter_size=3,
                        dilation=aspp_ratios[0],
                        padding=aspp_ratios[0],
                        param_attr=param_attr))
        with scope("aspp2"):
            if cfg.MODEL.DEEPLAB.ASPP_WITH_SEP_CONV:
                aspp2 = separate_conv(
                    input, channel, 1, 3, dilation=aspp_ratios[1], act=relu)
            else:
                aspp2 = bn_relu(
                    conv(
                        input,
                        channel,
                        stride=1,
                        filter_size=3,
                        dilation=aspp_ratios[1],
                        padding=aspp_ratios[1],
                        param_attr=param_attr))
        with scope("aspp3"):
            if cfg.MODEL.DEEPLAB.ASPP_WITH_SEP_CONV:
                aspp3 = separate_conv(
                    input, channel, 1, 3, dilation=aspp_ratios[2], act=relu)
            else:
                aspp3 = bn_relu(
                    conv(
                        input,
                        channel,
                        stride=1,
                        filter_size=3,
                        dilation=aspp_ratios[2],
                        padding=aspp_ratios[2],
                        param_attr=param_attr))
        with scope("concat"):
            data = fluid.layers.concat([image_avg, aspp0, aspp1, aspp2, aspp3],
                                       axis=1)
            data = bn_relu(
                conv(
                    data,
                    channel,
                    1,
                    1,
                    groups=1,
                    padding=0,
                    param_attr=param_attr))
            data = fluid.layers.dropout(data, 0.9)
        return data


def decoder(encode_data, decode_shortcut):
    # 解码器配置
    # encode_data:编码器输出
    # decode_shortcut: 从backbone引出的分支, resize后与encode_data concat
    # DECODER_USE_SEP_CONV: 默认为真,则concat后连接两个可分离卷积,否则为普通卷积
    param_attr = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=None,
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
    with scope('decoder'):
        with scope('concat'):
            decode_shortcut = bn_relu(
                conv(
                    decode_shortcut,
                    48,
                    1,
                    1,
                    groups=1,
                    padding=0,
                    param_attr=param_attr))
            if cfg.MODEL.FP16:
                encode_data = fluid.layers.cast(encode_data, 'float32')
            encode_data = fluid.layers.resize_bilinear(
                encode_data, decode_shortcut.shape[2:])
            if cfg.MODEL.FP16:
                encode_data = fluid.layers.cast(encode_data, 'float16')
            encode_data = fluid.layers.concat([encode_data, decode_shortcut],
                                              axis=1)
        if cfg.MODEL.DEEPLAB.DECODER_USE_SEP_CONV:
            with scope("separable_conv1"):
                encode_data = separate_conv(
                    encode_data, 256, 1, 3, dilation=1, act=relu)
            with scope("separable_conv2"):
                encode_data = separate_conv(
                    encode_data, 256, 1, 3, dilation=1, act=relu)
        else:
            with scope("decoder_conv1"):
                encode_data = bn_relu(
                    conv(
                        encode_data,
                        256,
                        stride=1,
                        filter_size=3,
                        dilation=1,
                        padding=1,
                        param_attr=param_attr))
            with scope("decoder_conv2"):
                encode_data = bn_relu(
                    conv(
                        encode_data,
                        256,
                        stride=1,
                        filter_size=3,
                        dilation=1,
                        padding=1,
                        param_attr=param_attr))
        return encode_data


def mobilenetv2(input):
    # Backbone: mobilenetv2结构配置
    # DEPTH_MULTIPLIER: mobilenetv2的scale设置,默认1.0
    # OUTPUT_STRIDE:下采样倍数
    # end_points: mobilenetv2的block数
    # decode_point: 从mobilenetv2中引出分支所在block数, 作为decoder输入
    scale = cfg.MODEL.DEEPLAB.DEPTH_MULTIPLIER
    output_stride = cfg.MODEL.DEEPLAB.OUTPUT_STRIDE
    model = mobilenet_backbone(scale=scale, output_stride=output_stride)
    end_points = 18
    decode_point = 4
    data, decode_shortcuts = model.net(
        input, end_points=end_points, decode_points=decode_point)
    decode_shortcut = decode_shortcuts[decode_point]
    return data, decode_shortcut


def xception(input):
    # Backbone: Xception结构配置, xception_65, xception_41, xception_71三种可选
    # decode_point: 从Xception中引出分支所在block数,作为decoder输入
    # end_point:Xception的block数
    cfg.MODEL.DEFAULT_EPSILON = 1e-3
    model = xception_backbone(cfg.MODEL.DEEPLAB.BACKBONE)
    backbone = cfg.MODEL.DEEPLAB.BACKBONE
    output_stride = cfg.MODEL.DEEPLAB.OUTPUT_STRIDE
    if '65' in backbone:
        decode_point = 2
        end_points = 21
    if '41' in backbone:
        decode_point = 2
        end_points = 13
    if '71' in backbone:
        decode_point = 3
        end_points = 23
    data, decode_shortcuts = model.net(
        input,
        output_stride=output_stride,
        end_points=end_points,
        decode_points=decode_point)
    decode_shortcut = decode_shortcuts[decode_point]
    return data, decode_shortcut


def deeplabv3p(img, num_classes):
    # Backbone设置:xception 或 mobilenetv2
    if 'xception' in cfg.MODEL.DEEPLAB.BACKBONE:
        data, decode_shortcut = xception(img)
    elif 'mobilenet' in cfg.MODEL.DEEPLAB.BACKBONE:
        data, decode_shortcut = mobilenetv2(img)
    else:
        raise Exception("deeplab only support xception and mobilenet backbone")

    # 编码器解码器设置
    cfg.MODEL.DEFAULT_EPSILON = 1e-5
    if cfg.MODEL.DEEPLAB.ENCODER_WITH_ASPP:
        data = encoder(data)
    if cfg.MODEL.DEEPLAB.ENABLE_DECODER:
        data = decoder(data, decode_shortcut)

    # 根据类别数设置最后一个卷积层输出,并resize到图片原始尺寸
    param_attr = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
    with scope('logit'):
        logit = conv(
            data,
            num_classes,
            1,
            stride=1,
            padding=0,
            bias_attr=True,
            param_attr=param_attr)
        if cfg.MODEL.FP16:
            logit = fluid.layers.cast(logit, 'float32')
        logit = fluid.layers.resize_bilinear(logit, img.shape[2:])
        if cfg.MODEL.FP16:
            logit = fluid.layers.cast(logit, 'float16')
    return logit