infer.py 12.6 KB
Newer Older
1
# coding: utf8
W
wuyefeilin 已提交
2
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import ast
import time

import gflags
import yaml
import cv2

import numpy as np
import paddle.fluid as fluid

from concurrent.futures import ThreadPoolExecutor, as_completed

gflags.DEFINE_string("conf", default="", help="Configuration File Path")
gflags.DEFINE_string("input_dir", default="", help="Directory of Input Images")
gflags.DEFINE_string("trt_mode", default="", help="Use optimized model")
W
wuyefeilin 已提交
33 34
gflags.DEFINE_string(
    "ext", default=".jpeg|.jpg", help="Input Image File Extensions")
35 36
gflags.FLAGS = gflags.FLAGS

W
wuyefeilin 已提交
37

S
sjtubinlong 已提交
38 39 40 41 42 43 44 45 46 47 48 49
# Generate ColorMap for visualization
def generate_colormap(num_classes):
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
W
wuyefeilin 已提交
50
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
S
sjtubinlong 已提交
51
    return color_map
52

W
wuyefeilin 已提交
53

54 55 56 57 58 59 60
# Paddle-TRT Precision Map
trt_precision_map = {
    "int8": fluid.core.AnalysisConfig.Precision.Int8,
    "fp32": fluid.core.AnalysisConfig.Precision.Float32,
    "fp16": fluid.core.AnalysisConfig.Precision.Half
}

W
wuyefeilin 已提交
61

62 63 64 65 66 67 68 69 70 71 72 73
# scan a directory and get all images with support extensions
def get_images_from_dir(img_dir, support_ext=".jpg|.jpeg"):
    if (not os.path.exists(img_dir) or not os.path.isdir(img_dir)):
        raise Exception("Image Directory [%s] invalid" % img_dir)
    imgs = []
    for item in os.listdir(img_dir):
        ext = os.path.splitext(item)[1][1:].strip().lower()
        if (len(ext) > 0 and ext in support_ext):
            item_path = os.path.join(img_dir, item)
            imgs.append(item_path)
    return imgs

W
wuyefeilin 已提交
74

75 76 77 78 79 80 81 82 83 84
# Deploy Configuration File Parser
class DeployConfig:
    def __init__(self, conf_file):
        if not os.path.exists(conf_file):
            raise Exception('Config file path [%s] invalid!' % conf_file)

        with open(conf_file) as fp:
            configs = yaml.load(fp, Loader=yaml.FullLoader)
            deploy_conf = configs["DEPLOY"]
            # 1. get eval_crop_size
W
wuyefeilin 已提交
85 86
            self.eval_crop_size = ast.literal_eval(
                deploy_conf["EVAL_CROP_SIZE"])
87 88 89 90 91 92 93
            # 2. get mean
            self.mean = deploy_conf["MEAN"]
            # 3. get std
            self.std = deploy_conf["STD"]
            # 4. get class_num
            self.class_num = deploy_conf["NUM_CLASSES"]
            # 5. get paddle model and params file path
W
wuyefeilin 已提交
94 95 96 97
            self.model_file = os.path.join(deploy_conf["MODEL_PATH"],
                                           deploy_conf["MODEL_FILENAME"])
            self.param_file = os.path.join(deploy_conf["MODEL_PATH"],
                                           deploy_conf["PARAMS_FILENAME"])
98 99 100 101 102 103 104 105
            # 6. use_gpu
            self.use_gpu = deploy_conf["USE_GPU"]
            # 7. predictor_mode
            self.predictor_mode = deploy_conf["PREDICTOR_MODE"]
            # 8. batch_size
            self.batch_size = deploy_conf["BATCH_SIZE"]
            # 9. channels
            self.channels = deploy_conf["CHANNELS"]
106 107 108
            # 10. use_pr
            self.use_pr = deploy_conf["USE_PR"]

109 110 111 112 113 114 115 116 117 118

class ImageReader:
    def __init__(self, configs):
        self.config = configs
        self.threads_pool = ThreadPoolExecutor(configs.batch_size)

    # image processing thread worker
    def process_worker(self, imgs, idx, use_pr=False):
        image_path = imgs[idx]
        im = cv2.imread(image_path, -1)
L
LutaoChu 已提交
119
        if len(im.shape) == 2:
120
            im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
L
LutaoChu 已提交
121
        channels = im.shape[2]
122 123 124
        if channels != 3 and channels != 4:
            print("Only support rgb(gray) or rgba image.")
            return -1
L
LutaoChu 已提交
125 126
        ori_h = im.shape[0]
        ori_w = im.shape[1]
127 128 129

        # resize to eval_crop_size
        eval_crop_size = self.config.eval_crop_size
L
LutaoChu 已提交
130
        if (ori_h != eval_crop_size[1] or ori_w != eval_crop_size[0]):
131 132 133 134 135 136 137 138 139 140 141 142 143
            im = cv2.resize(
                im, eval_crop_size, fx=0, fy=0, interpolation=cv2.INTER_LINEAR)

        # if use models with no pre-processing/post-processing op optimizations
        if not use_pr:
            im_mean = np.array(self.config.mean).reshape((3, 1, 1))
            im_std = np.array(self.config.std).reshape((3, 1, 1))
            # HWC -> CHW, don't use transpose((2, 0, 1))
            im = im.swapaxes(1, 2)
            im = im.swapaxes(0, 1)
            im = im[:, :, :].astype('float32') / 255.0
            im -= im_mean
            im /= im_std
W
wuyefeilin 已提交
144
        im = im[np.newaxis, :, :, :]
145 146 147 148 149 150
        info = [image_path, im, (ori_w, ori_h)]
        return info

    # process multiple images with multithreading
    def process(self, imgs, use_pr=False):
        imgs_data = []
151
        with ThreadPoolExecutor(max_workers=self.config.batch_size) as exe_pool:
W
wuyefeilin 已提交
152
            tasks = [
153
                exe_pool.submit(self.process_worker, imgs, idx, use_pr)
W
wuyefeilin 已提交
154 155
                for idx in range(len(imgs))
            ]
156 157 158 159
        for task in as_completed(tasks):
            imgs_data.append(task.result())
        return imgs_data

W
wuyefeilin 已提交
160

161 162 163 164 165 166 167 168
class Predictor:
    def __init__(self, conf_file):
        self.config = DeployConfig(conf_file)
        self.image_reader = ImageReader(self.config)
        if self.config.predictor_mode == "NATIVE":
            predictor_config = fluid.core.NativeConfig()
            predictor_config.prog_file = self.config.model_file
            predictor_config.param_file = self.config.param_file
B
Bin Long 已提交
169
            predictor_config.use_gpu = self.config.use_gpu
170 171 172 173 174 175 176 177 178 179 180 181
            predictor_config.device = 0
            predictor_config.fraction_of_gpu_memory = 0
        elif self.config.predictor_mode == "ANALYSIS":
            predictor_config = fluid.core.AnalysisConfig(
                self.config.model_file, self.config.param_file)
            if self.config.use_gpu:
                predictor_config.enable_use_gpu(100, 0)
                predictor_config.switch_ir_optim(True)
                if gflags.FLAGS.trt_mode != "":
                    precision_type = trt_precision_map[gflags.FLAGS.trt_mode]
                    use_calib = (gflags.FLAGS.trt_mode == "int8")
                    predictor_config.enable_tensorrt_engine(
W
wuyefeilin 已提交
182
                        workspace_size=1 << 30,
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
                        max_batch_size=self.config.batch_size,
                        min_subgraph_size=40,
                        precision_mode=precision_type,
                        use_static=False,
                        use_calib_mode=use_calib)
            else:
                predictor_config.disable_gpu()
            predictor_config.switch_specify_input_names(True)
            predictor_config.enable_memory_optim()
        self.predictor = fluid.core.create_paddle_predictor(predictor_config)

    def create_tensor(self, inputs, batch_size, use_pr=False):
        im_tensor = fluid.core.PaddleTensor()
        im_tensor.name = "image"
        if not use_pr:
W
wuyefeilin 已提交
198 199 200 201
            im_tensor.shape = [
                batch_size, self.config.channels, self.config.eval_crop_size[1],
                self.config.eval_crop_size[0]
            ]
202
        else:
W
wuyefeilin 已提交
203 204 205 206
            im_tensor.shape = [
                batch_size, self.config.eval_crop_size[1],
                self.config.eval_crop_size[0], self.config.channels
            ]
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        im_tensor.dtype = fluid.core.PaddleDType.FLOAT32
        im_tensor.data = fluid.core.PaddleBuf(inputs.ravel().astype("float32"))
        return [im_tensor]

    # save prediction results and visualization them
    def output_result(self, imgs_data, infer_out, use_pr=False):
        for idx in range(len(imgs_data)):
            img_name = imgs_data[idx][0]
            ori_shape = imgs_data[idx][2]
            mask = infer_out[idx]
            if not use_pr:
                mask = np.argmax(mask, axis=0)
            mask = mask.astype('uint8')
            mask_png = mask
            score_png = mask_png[:, :, np.newaxis]
            score_png = np.concatenate([score_png] * 3, axis=2)
            # visualization score png
S
sjtubinlong 已提交
224
            color_map = generate_colormap(self.config.class_num)
225 226 227 228 229 230 231 232 233 234 235 236 237 238
            for i in range(score_png.shape[0]):
                for j in range(score_png.shape[1]):
                    score_png[i, j] = color_map[score_png[i, j, 0]]
            # save the mask
            # mask of xxx.jpeg will be saved as xxx_jpeg_mask.png
            ext_pos = img_name.rfind(".")
            img_name_fix = img_name[:ext_pos] + "_" + img_name[ext_pos + 1:]
            mask_save_name = img_name_fix + "_mask.png"
            cv2.imwrite(mask_save_name, mask_png, [cv2.CV_8UC1])
            # save the visualized result
            # result of xxx.jpeg will be saved as xxx_jpeg_result.png
            vis_result_name = img_name_fix + "_result.png"
            result_png = score_png
            # if not use_pr:
W
wuyefeilin 已提交
239 240 241 242 243 244
            result_png = cv2.resize(
                result_png,
                ori_shape,
                fx=0,
                fy=0,
                interpolation=cv2.INTER_CUBIC)
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
            cv2.imwrite(vis_result_name, result_png, [cv2.CV_8UC1])
            print("save result of [" + img_name + "] done.")

    def predict(self, images):
        # image reader preprocessing time cost
        reader_time = 0
        # inference time cost
        infer_time = 0
        # post_processing: generate mask and visualize it
        post_time = 0
        # total time cost: preprocessing + inference + postprocessing
        total_runtime = 0

        # record starting time point
        total_start = time.time()
        batch_size = self.config.batch_size
261
        use_pr = self.config.use_pr
262 263 264 265 266
        for i in range(0, len(images), batch_size):
            real_batch_size = batch_size
            if i + batch_size >= len(images):
                real_batch_size = len(images) - i
            reader_start = time.time()
W
wuyefeilin 已提交
267
            img_datas = self.image_reader.process(images[i:i + real_batch_size],
268
                                                  use_pr)
269 270
            input_data = np.concatenate([item[1] for item in img_datas])
            input_data = self.create_tensor(
271
                input_data, real_batch_size, use_pr=use_pr)
272 273 274 275 276 277
            reader_end = time.time()
            infer_start = time.time()
            output_data = self.predictor.run(input_data)[0]
            infer_end = time.time()
            output_data = output_data.as_ndarray()
            post_start = time.time()
278
            self.output_result(img_datas, output_data, use_pr)
279
            post_end = time.time()
S
sjtubinlong 已提交
280 281
            reader_time += (reader_end - reader_start)
            infer_time += (infer_end - infer_start)
282 283 284 285 286 287
            post_time += (post_end - post_start)

        # finishing process all images
        total_end = time.time()
        # compute whole processing time
        total_runtime = (total_end - total_start)
W
wuyefeilin 已提交
288 289 290 291
        print(
            "images_num=[%d],preprocessing_time=[%f],infer_time=[%f],postprocessing_time=[%f],total_runtime=[%f]"
            % (len(images), reader_time, infer_time, post_time, total_runtime))

292 293 294 295 296

def run(deploy_conf, imgs_dir, support_extensions=".jpg|.jpeg"):
    # 1. scan and get all images with valid extensions in directory imgs_dir
    imgs = get_images_from_dir(imgs_dir)
    if len(imgs) == 0:
W
wuyefeilin 已提交
297 298
        print("No Image (with extensions : %s) found in [%s]" %
              (support_extensions, imgs_dir))
299 300 301 302 303 304 305
        return -1
    # 2. create a predictor
    seg_predictor = Predictor(deploy_conf)
    # 3. do a inference on images
    seg_predictor.predict(imgs)
    return 0

W
wuyefeilin 已提交
306

307 308 309 310
if __name__ == "__main__":
    # 0. parse the arguments
    gflags.FLAGS(sys.argv)
    if (gflags.FLAGS.conf == "" or gflags.FLAGS.input_dir == ""):
W
wuyefeilin 已提交
311 312
        print("Usage: python infer.py --conf=/config/path/to/your/model " +
              "--input_dir=/directory/of/your/input/images [--use_pr=True]")
313 314 315 316
        exit(-1)
    # set empty to turn off as default
    trt_mode = gflags.FLAGS.trt_mode
    if (trt_mode != "" and trt_mode not in trt_precision_map):
W
wuyefeilin 已提交
317 318
        print(
            "Invalid trt_mode [%s], only support[int8, fp16, fp32]" % trt_mode)
319 320
        exit(-1)
    # run inference
B
Bin Long 已提交
321
    run(gflags.FLAGS.conf, gflags.FLAGS.input_dir, gflags.FLAGS.ext)