infer.py 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import ast
import time

import gflags
import yaml
import cv2

import numpy as np
import paddle.fluid as fluid

from concurrent.futures import ThreadPoolExecutor, as_completed

gflags.DEFINE_string("conf", default="", help="Configuration File Path")
gflags.DEFINE_string("input_dir", default="", help="Directory of Input Images")
gflags.DEFINE_boolean("use_pr", default=False, help="Use optimized model")
gflags.DEFINE_string("trt_mode", default="", help="Use optimized model")
gflags.FLAGS = gflags.FLAGS

# ColorMap for visualization
color_map = [[128, 64, 128], [244, 35, 231], [69, 69, 69], [102, 102, 156],
             [190, 153, 153], [153, 153, 153], [250, 170, 29], [219, 219, 0],
             [106, 142, 35], [152, 250, 152], [69, 129, 180], [219, 19, 60],
             [255, 0, 0], [0, 0, 142], [0, 0, 69], [0, 60, 100], [0, 79, 100],
             [0, 0, 230], [119, 10, 32]]

# Paddle-TRT Precision Map
trt_precision_map = {
    "int8": fluid.core.AnalysisConfig.Precision.Int8,
    "fp32": fluid.core.AnalysisConfig.Precision.Float32,
    "fp16": fluid.core.AnalysisConfig.Precision.Half
}

# scan a directory and get all images with support extensions
def get_images_from_dir(img_dir, support_ext=".jpg|.jpeg"):
    if (not os.path.exists(img_dir) or not os.path.isdir(img_dir)):
        raise Exception("Image Directory [%s] invalid" % img_dir)
    imgs = []
    for item in os.listdir(img_dir):
        ext = os.path.splitext(item)[1][1:].strip().lower()
        if (len(ext) > 0 and ext in support_ext):
            item_path = os.path.join(img_dir, item)
            imgs.append(item_path)
    return imgs

# Deploy Configuration File Parser
class DeployConfig:
    def __init__(self, conf_file):
        if not os.path.exists(conf_file):
            raise Exception('Config file path [%s] invalid!' % conf_file)

        with open(conf_file) as fp:
            configs = yaml.load(fp, Loader=yaml.FullLoader)
            deploy_conf = configs["DEPLOY"]
            # 1. get eval_crop_size
            self.eval_crop_size = ast.literal_eval(deploy_conf["EVAL_CROP_SIZE"])
            # 2. get mean
            self.mean = deploy_conf["MEAN"]
            # 3. get std
            self.std = deploy_conf["STD"]
            # 4. get class_num
            self.class_num = deploy_conf["NUM_CLASSES"]
            # 5. get paddle model and params file path
            self.model_file = os.path.join(
                deploy_conf["MODEL_PATH"], deploy_conf["MODEL_FILENAME"])
            self.param_file = os.path.join(
                deploy_conf["MODEL_PATH"], deploy_conf["PARAMS_FILENAME"])
            # 6. use_gpu
            self.use_gpu = deploy_conf["USE_GPU"]
            # 7. predictor_mode
            self.predictor_mode = deploy_conf["PREDICTOR_MODE"]
            # 8. batch_size
            self.batch_size = deploy_conf["BATCH_SIZE"]
            # 9. channels
            self.channels = deploy_conf["CHANNELS"]

class ImageReader:
    def __init__(self, configs):
        self.config = configs
        self.threads_pool = ThreadPoolExecutor(configs.batch_size)

    # image processing thread worker
    def process_worker(self, imgs, idx, use_pr=False):
        image_path = imgs[idx]
        im = cv2.imread(image_path, -1)
        channels = im.shape[2]
        ori_h = im.shape[0]
        ori_w = im.shape[1]
        if channels == 1:
            im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
            channels = im.shape[2]
        if channels != 3 and channels != 4:
            print("Only support rgb(gray) or rgba image.")
            return -1

        # resize to eval_crop_size
        eval_crop_size = self.config.eval_crop_size
        if (ori_h != eval_crop_size[0] or ori_w != eval_crop_size[1]):
            im = cv2.resize(
                im, eval_crop_size, fx=0, fy=0, interpolation=cv2.INTER_LINEAR)

        # if use models with no pre-processing/post-processing op optimizations
        if not use_pr:
            im_mean = np.array(self.config.mean).reshape((3, 1, 1))
            im_std = np.array(self.config.std).reshape((3, 1, 1))
            # HWC -> CHW, don't use transpose((2, 0, 1))
            im = im.swapaxes(1, 2)
            im = im.swapaxes(0, 1)
            im = im[:, :, :].astype('float32') / 255.0
            im -= im_mean
            im /= im_std
        im = im[np.newaxis,:,:,:]
        info = [image_path, im, (ori_w, ori_h)]
        return info

    # process multiple images with multithreading
    def process(self, imgs, use_pr=False):
        imgs_data = []
        with ThreadPoolExecutor(max_workers=self.config.batch_size) as exec:
            tasks = [exec.submit(self.process_worker, imgs, idx, use_pr)
                        for idx in range(len(imgs))]
        for task in as_completed(tasks):
            imgs_data.append(task.result())
        return imgs_data

class Predictor:
    def __init__(self, conf_file):
        self.config = DeployConfig(conf_file)
        self.image_reader = ImageReader(self.config)
        if self.config.predictor_mode == "NATIVE":
            predictor_config = fluid.core.NativeConfig()
            predictor_config.prog_file = self.config.model_file
            predictor_config.param_file = self.config.param_file
            predictor_config.use_gpu = config.use_gpu
            predictor_config.device = 0
            predictor_config.fraction_of_gpu_memory = 0
        elif self.config.predictor_mode == "ANALYSIS":
            predictor_config = fluid.core.AnalysisConfig(
                self.config.model_file, self.config.param_file)
            if self.config.use_gpu:
                predictor_config.enable_use_gpu(100, 0)
                predictor_config.switch_ir_optim(True)
                if gflags.FLAGS.trt_mode != "":
                    precision_type = trt_precision_map[gflags.FLAGS.trt_mode]
                    use_calib = (gflags.FLAGS.trt_mode == "int8")
                    predictor_config.enable_tensorrt_engine(
                        workspace_size=1<<30,
                        max_batch_size=self.config.batch_size,
                        min_subgraph_size=40,
                        precision_mode=precision_type,
                        use_static=False,
                        use_calib_mode=use_calib)
            else:
                predictor_config.disable_gpu()
            predictor_config.switch_specify_input_names(True)
            predictor_config.enable_memory_optim()
        self.predictor = fluid.core.create_paddle_predictor(predictor_config)

    def create_tensor(self, inputs, batch_size, use_pr=False):
        im_tensor = fluid.core.PaddleTensor()
        im_tensor.name = "image"
        if not use_pr:
            im_tensor.shape = [batch_size,
                               self.config.channels,
                               self.config.eval_crop_size[1],
                               self.config.eval_crop_size[0]]
        else:
            im_tensor.shape = [batch_size,
                               self.config.eval_crop_size[1],
                               self.config.eval_crop_size[0],
                               self.config.channels]
        im_tensor.dtype = fluid.core.PaddleDType.FLOAT32
        im_tensor.data = fluid.core.PaddleBuf(inputs.ravel().astype("float32"))
        return [im_tensor]

    # save prediction results and visualization them
    def output_result(self, imgs_data, infer_out, use_pr=False):
        for idx in range(len(imgs_data)):
            img_name = imgs_data[idx][0]
            ori_shape = imgs_data[idx][2]
            mask = infer_out[idx]
            if not use_pr:
                mask = np.argmax(mask, axis=0)
            mask = mask.astype('uint8')
            mask_png = mask
            score_png = mask_png[:, :, np.newaxis]
            score_png = np.concatenate([score_png] * 3, axis=2)
            # visualization score png
            for i in range(score_png.shape[0]):
                for j in range(score_png.shape[1]):
                    score_png[i, j] = color_map[score_png[i, j, 0]]
            # save the mask
            # mask of xxx.jpeg will be saved as xxx_jpeg_mask.png
            ext_pos = img_name.rfind(".")
            img_name_fix = img_name[:ext_pos] + "_" + img_name[ext_pos + 1:]
            mask_save_name = img_name_fix + "_mask.png"
            cv2.imwrite(mask_save_name, mask_png, [cv2.CV_8UC1])
            # save the visualized result
            # result of xxx.jpeg will be saved as xxx_jpeg_result.png
            vis_result_name = img_name_fix + "_result.png"
            result_png = score_png
            # if not use_pr:
            result_png = cv2.resize(result_png, ori_shape, fx=0, fy=0,
                                    interpolation=cv2.INTER_CUBIC)
            cv2.imwrite(vis_result_name, result_png, [cv2.CV_8UC1])
            print("save result of [" + img_name + "] done.")

    def predict(self, images):
        # image reader preprocessing time cost
        reader_time = 0
        # inference time cost
        infer_time = 0
        # post_processing: generate mask and visualize it
        post_time = 0
        # total time cost: preprocessing + inference + postprocessing
        total_runtime = 0

        # record starting time point
        total_start = time.time()
        batch_size = self.config.batch_size
        for i in range(0, len(images), batch_size):
            real_batch_size = batch_size
            if i + batch_size >= len(images):
                real_batch_size = len(images) - i
            reader_start = time.time()
            img_datas = self.image_reader.process(images[i: i + real_batch_size])
            input_data = np.concatenate([item[1] for item in img_datas])
            input_data = self.create_tensor(
                input_data, real_batch_size, use_pr=gflags.FLAGS.use_pr)
            reader_end = time.time()
            infer_start = time.time()
            output_data = self.predictor.run(input_data)[0]
            infer_end = time.time()
            reader_time += (reader_end - reader_start)
            infer_time += (infer_end - infer_start)
            output_data = output_data.as_ndarray()
            post_start = time.time()
            self.output_result(img_datas, output_data, gflags.FLAGS.use_pr)
            post_end = time.time()
            post_time += (post_end - post_start)

        # finishing process all images
        total_end = time.time()
        # compute whole processing time
        total_runtime = (total_end - total_start)
        print("images_num=[%d],preprocessing_time=[%f],infer_time=[%f],postprocessing_time=[%f],total_runtime=[%f]"
              % (len(images), reader_time, infer_time, post_time, total_runtime))

def run(deploy_conf, imgs_dir, support_extensions=".jpg|.jpeg"):
    # 1. scan and get all images with valid extensions in directory imgs_dir
    imgs = get_images_from_dir(imgs_dir)
    if len(imgs) == 0:
        print("No Image (with extensions : %s) found in [%s]"
              % (support_extensions, imgs_dir))
        return -1
    # 2. create a predictor
    seg_predictor = Predictor(deploy_conf)
    # 3. do a inference on images
    seg_predictor.predict(imgs)
    return 0

if __name__ == "__main__":
    # 0. parse the arguments
    gflags.FLAGS(sys.argv)
    if (gflags.FLAGS.conf == "" or gflags.FLAGS.input_dir == ""):
        print("Usage: python infer.py --conf=/config/path/to/your/model "
              +"--input_dir=/directory/of/your/input/images [--use_pr=True]")
        exit(-1)
    # set empty to turn off as default
    trt_mode = gflags.FLAGS.trt_mode
    if (trt_mode != "" and trt_mode not in trt_precision_map):
        print("Invalid trt_mode [%s], only support[int8, fp16, fp32]" % trt_mode)
        exit(-1)
    # run inference
    run(gflags.FLAGS.conf, gflags.FLAGS.input_dir)