infer.py 2.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

from paddle.fluid.dygraph.base import to_variable
import numpy as np
import paddle.fluid as fluid
import cv2
import tqdm

C
chenguowei01 已提交
23 24
from dygraph import utils
import dygraph.utils.logging as logging
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72


def mkdir(path):
    sub_dir = os.path.dirname(path)
    if not os.path.exists(sub_dir):
        os.makedirs(sub_dir)


def infer(model, test_dataset=None, model_dir=None, save_dir='output'):
    ckpt_path = os.path.join(model_dir, 'model')
    para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path)
    model.set_dict(para_state_dict)
    model.eval()

    added_saved_dir = os.path.join(save_dir, 'added')
    pred_saved_dir = os.path.join(save_dir, 'prediction')

    logging.info("Start to predict...")
    for im, im_info, im_path in tqdm.tqdm(test_dataset):
        im = to_variable(im)
        pred, _ = model(im)
        pred = pred.numpy()
        pred = np.squeeze(pred).astype('uint8')
        for info in im_info[::-1]:
            if info[0] == 'resize':
                h, w = info[1][0], info[1][1]
                pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST)
            elif info[0] == 'padding':
                h, w = info[1][0], info[1][1]
                pred = pred[0:h, 0:w]
            else:
                raise Exception("Unexpected info '{}' in im_info".format(
                    info[0]))

        im_file = im_path.replace(test_dataset.data_dir, '')
        if im_file[0] == '/':
            im_file = im_file[1:]
        # save added image
        added_image = utils.visualize(im_path, pred, weight=0.6)
        added_image_path = os.path.join(added_saved_dir, im_file)
        mkdir(added_image_path)
        cv2.imwrite(added_image_path, added_image)

        # save prediction
        pred_im = utils.visualize(im_path, pred, weight=0.0)
        pred_saved_path = os.path.join(pred_saved_dir, im_file)
        mkdir(pred_saved_path)
        cv2.imwrite(pred_saved_path, pred_im)