# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from paddle.fluid.dygraph.base import to_variable import numpy as np import paddle.fluid as fluid import cv2 import tqdm from dygraph import utils import dygraph.utils.logging as logging def mkdir(path): sub_dir = os.path.dirname(path) if not os.path.exists(sub_dir): os.makedirs(sub_dir) def infer(model, test_dataset=None, model_dir=None, save_dir='output'): ckpt_path = os.path.join(model_dir, 'model') para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path) model.set_dict(para_state_dict) model.eval() added_saved_dir = os.path.join(save_dir, 'added') pred_saved_dir = os.path.join(save_dir, 'prediction') logging.info("Start to predict...") for im, im_info, im_path in tqdm.tqdm(test_dataset): im = to_variable(im) pred, _ = model(im) pred = pred.numpy() pred = np.squeeze(pred).astype('uint8') for info in im_info[::-1]: if info[0] == 'resize': h, w = info[1][0], info[1][1] pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST) elif info[0] == 'padding': h, w = info[1][0], info[1][1] pred = pred[0:h, 0:w] else: raise Exception("Unexpected info '{}' in im_info".format( info[0])) im_file = im_path.replace(test_dataset.data_dir, '') if im_file[0] == '/': im_file = im_file[1:] # save added image added_image = utils.visualize(im_path, pred, weight=0.6) added_image_path = os.path.join(added_saved_dir, im_file) mkdir(added_image_path) cv2.imwrite(added_image_path, added_image) # save prediction pred_im = utils.visualize(im_path, pred, weight=0.0) pred_saved_path = os.path.join(pred_saved_dir, im_file) mkdir(pred_saved_path) cv2.imwrite(pred_saved_path, pred_im)