mobilenetv3.py 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import math
C
chenguowei01 已提交
20
import os
21

C
chenguowei01 已提交
22
import numpy as np
23 24 25 26
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
27
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Dropout
28
from paddle.nn import SyncBatchNorm as BatchNorm
29

30
from dygraph.models.architectures import layer_utils
31
from dygraph.cvlibs import manager
C
chenguowei01 已提交
32
from dygraph.utils import utils
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

__all__ = [
    "MobileNetV3_small_x0_35", "MobileNetV3_small_x0_5",
    "MobileNetV3_small_x0_75", "MobileNetV3_small_x1_0",
    "MobileNetV3_small_x1_25", "MobileNetV3_large_x0_35",
    "MobileNetV3_large_x0_5", "MobileNetV3_large_x0_75",
    "MobileNetV3_large_x1_0", "MobileNetV3_large_x1_25"
]


def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v

C
chenguowei01 已提交
51

52 53 54 55 56 57 58
def get_padding_same(kernel_size, dilation_rate):
    """
    SAME padding implementation given kernel_size and dilation_rate.
    The calculation formula as following:
        (F-(k+(k -1)*(r-1))+2*p)/s + 1 = F_new
        where F: a feature map
              k: kernel size, r: dilation rate, p: padding value, s: stride
C
chenguowei01 已提交
59
              F_new: new feature map
60 61 62 63 64 65 66 67 68
    Args:
        kernel_size (int)
        dilation_rate (int)

    Returns:
        padding_same (int): padding value
    """
    k = kernel_size
    r = dilation_rate
C
chenguowei01 已提交
69
    padding_same = (k + (k - 1) * (r - 1) - 1) // 2
70 71 72

    return padding_same

C
chenguowei01 已提交
73

74
class MobileNetV3(fluid.dygraph.Layer):
C
chenguowei01 已提交
75 76 77 78 79 80 81
    def __init__(self,
                 backbone_pretrained=None,
                 scale=1.0,
                 model_name="small",
                 class_dim=1000,
                 output_stride=None,
                 **kwargs):
82 83 84 85 86 87 88 89
        super(MobileNetV3, self).__init__()

        inplanes = 16
        if model_name == "large":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, False, "relu", 1],
                [3, 64, 24, False, "relu", 2],
C
chenguowei01 已提交
90
                [3, 72, 24, False, "relu", 1],  # output 1 -> out_index=2
91 92
                [5, 72, 40, True, "relu", 2],
                [5, 120, 40, True, "relu", 1],
C
chenguowei01 已提交
93
                [5, 120, 40, True, "relu", 1],  # output 2 -> out_index=5
94 95 96 97 98
                [3, 240, 80, False, "hard_swish", 2],
                [3, 200, 80, False, "hard_swish", 1],
                [3, 184, 80, False, "hard_swish", 1],
                [3, 184, 80, False, "hard_swish", 1],
                [3, 480, 112, True, "hard_swish", 1],
C
chenguowei01 已提交
99 100
                [3, 672, 112, True, "hard_swish",
                 1],  # output 3 -> out_index=11
101 102
                [5, 672, 160, True, "hard_swish", 2],
                [5, 960, 160, True, "hard_swish", 1],
C
chenguowei01 已提交
103 104
                [5, 960, 160, True, "hard_swish",
                 1],  # output 3 -> out_index=14
105 106 107 108 109 110 111 112
            ]
            self.out_indices = [2, 5, 11, 14]

            self.cls_ch_squeeze = 960
            self.cls_ch_expand = 1280
        elif model_name == "small":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
C
chenguowei01 已提交
113
                [3, 16, 16, True, "relu", 2],  # output 1 -> out_index=0
114
                [3, 72, 24, False, "relu", 2],
C
chenguowei01 已提交
115
                [3, 88, 24, False, "relu", 1],  # output 2 -> out_index=3
116 117 118 119
                [5, 96, 40, True, "hard_swish", 2],
                [5, 240, 40, True, "hard_swish", 1],
                [5, 240, 40, True, "hard_swish", 1],
                [5, 120, 48, True, "hard_swish", 1],
C
chenguowei01 已提交
120
                [5, 144, 48, True, "hard_swish", 1],  # output 3 -> out_index=7
121 122
                [5, 288, 96, True, "hard_swish", 2],
                [5, 576, 96, True, "hard_swish", 1],
C
chenguowei01 已提交
123
                [5, 576, 96, True, "hard_swish", 1],  # output 4 -> out_index=10
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
            ]
            self.out_indices = [0, 3, 7, 10]

            self.cls_ch_squeeze = 576
            self.cls_ch_expand = 1280
        else:
            raise NotImplementedError(
                "mode[{}_model] is not implemented!".format(model_name))

        ###################################################
        # modify stride and dilation based on output_stride
        self.dilation_cfg = [1] * len(self.cfg)
        self.modify_bottle_params(output_stride=output_stride)
        ###################################################

        self.conv1 = ConvBNLayer(
            in_c=3,
            out_c=make_divisible(inplanes * scale),
            filter_size=3,
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
            act="hard_swish",
            name="conv1")

        self.block_list = []

        inplanes = make_divisible(inplanes * scale)
        for i, (k, exp, c, se, nl, s) in enumerate(self.cfg):
            ######################################
            # add dilation rate
            dilation_rate = self.dilation_cfg[i]
            ######################################
            self.block_list.append(
                ResidualUnit(
                    in_c=inplanes,
                    mid_c=make_divisible(scale * exp),
                    out_c=make_divisible(scale * c),
                    filter_size=k,
                    stride=s,
                    dilation=dilation_rate,
                    use_se=se,
                    act=nl,
                    name="conv" + str(i + 2)))
            self.add_sublayer(
                sublayer=self.block_list[-1], name="conv" + str(i + 2))
            inplanes = make_divisible(scale * c)

        self.last_second_conv = ConvBNLayer(
            in_c=inplanes,
            out_c=make_divisible(scale * self.cls_ch_squeeze),
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=True,
            act="hard_swish",
            name="conv_last")

        self.pool = Pool2D(
            pool_type="avg", global_pooling=True, use_cudnn=False)

        self.last_conv = Conv2D(
            num_channels=make_divisible(scale * self.cls_ch_squeeze),
            num_filters=self.cls_ch_expand,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            param_attr=ParamAttr(name="last_1x1_conv_weights"),
            bias_attr=False)

        self.out = Linear(
            input_dim=self.cls_ch_expand,
            output_dim=class_dim,
            param_attr=ParamAttr("fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

C
chenguowei01 已提交
203 204
        self.init_weight(backbone_pretrained)

205
    def modify_bottle_params(self, output_stride=None):
C
chenguowei01 已提交
206

207 208 209 210 211 212 213 214 215 216
        if output_stride is not None and output_stride % 2 != 0:
            raise Exception("output stride must to be even number")
        if output_stride is not None:
            stride = 2
            rate = 1
            for i, _cfg in enumerate(self.cfg):
                stride = stride * _cfg[-1]
                if stride > output_stride:
                    rate = rate * _cfg[-1]
                    self.cfg[i][-1] = 1
C
chenguowei01 已提交
217

218
                self.dilation_cfg[i] = rate
C
chenguowei01 已提交
219

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def forward(self, inputs, label=None, dropout_prob=0.2):
        x = self.conv1(inputs)
        # A feature list saves each downsampling feature.
        feat_list = []
        for i, block in enumerate(self.block_list):
            x = block(x)
            if i in self.out_indices:
                feat_list.append(x)
            #print("block {}:".format(i),x.shape, self.dilation_cfg[i])
        x = self.last_second_conv(x)
        x = self.pool(x)
        x = self.last_conv(x)
        x = fluid.layers.hard_swish(x)
        x = fluid.layers.dropout(x=x, dropout_prob=dropout_prob)
        x = fluid.layers.reshape(x, shape=[x.shape[0], x.shape[1]])
        x = self.out(x)

        return x, feat_list

C
chenguowei01 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251
    def init_weight(self, pretrained_model=None):
        """
        Initialize the parameters of model parts.
        Args:
            pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
        """
        if pretrained_model is not None:
            if os.path.exists(pretrained_model):
                utils.load_pretrained_model(self, pretrained_model)
            else:
                raise Exception('Pretrained model is not found: {}'.format(
                    pretrained_model))

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 in_c,
                 out_c,
                 filter_size,
                 stride,
                 padding,
                 dilation=1,
                 num_groups=1,
                 if_act=True,
                 act=None,
                 use_cudnn=True,
                 name=""):
        super(ConvBNLayer, self).__init__()
        self.if_act = if_act
        self.act = act
C
chenguowei01 已提交
269

270 271 272 273 274 275 276 277 278 279 280 281
        self.conv = fluid.dygraph.Conv2D(
            num_channels=in_c,
            num_filters=out_c,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=num_groups,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False,
            use_cudnn=use_cudnn,
            act=None)
282 283 284
        self.bn = BatchNorm(
            num_features=out_c,
            weight_attr=ParamAttr(
285 286 287 288 289 290
                name=name + "_bn_scale",
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=0.0)),
            bias_attr=ParamAttr(
                name=name + "_bn_offset",
                regularizer=fluid.regularizer.L2DecayRegularizer(
291
                    regularization_coeff=0.0)))
C
chenguowei01 已提交
292

293
        self._act_op = layer_utils.Activation(act=None)
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.if_act:
            if self.act == "relu":
                x = fluid.layers.relu(x)
            elif self.act == "hard_swish":
                x = fluid.layers.hard_swish(x)
            else:
                print("The activation function is selected incorrectly.")
                exit()
        return x


class ResidualUnit(fluid.dygraph.Layer):
    def __init__(self,
                 in_c,
                 mid_c,
                 out_c,
                 filter_size,
                 stride,
                 use_se,
                 dilation=1,
                 act=None,
                 name=''):
        super(ResidualUnit, self).__init__()
        self.if_shortcut = stride == 1 and in_c == out_c
        self.if_se = use_se

        self.expand_conv = ConvBNLayer(
            in_c=in_c,
            out_c=mid_c,
            filter_size=1,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
            name=name + "_expand")
C
chenguowei01 已提交
333

334 335 336 337 338
        self.bottleneck_conv = ConvBNLayer(
            in_c=mid_c,
            out_c=mid_c,
            filter_size=filter_size,
            stride=stride,
C
chenguowei01 已提交
339 340 341
            padding=get_padding_same(
                filter_size,
                dilation),  #int((filter_size - 1) // 2) + (dilation - 1),
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
            dilation=dilation,
            num_groups=mid_c,
            if_act=True,
            act=act,
            name=name + "_depthwise")
        if self.if_se:
            self.mid_se = SEModule(mid_c, name=name + "_se")
        self.linear_conv = ConvBNLayer(
            in_c=mid_c,
            out_c=out_c,
            filter_size=1,
            stride=1,
            padding=0,
            if_act=False,
            act=None,
            name=name + "_linear")
        self.dilation = dilation
C
chenguowei01 已提交
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    def forward(self, inputs):
        x = self.expand_conv(inputs)
        x = self.bottleneck_conv(x)
        if self.if_se:
            x = self.mid_se(x)
        x = self.linear_conv(x)
        if self.if_shortcut:
            x = fluid.layers.elementwise_add(inputs, x)
        return x


class SEModule(fluid.dygraph.Layer):
    def __init__(self, channel, reduction=4, name=""):
        super(SEModule, self).__init__()
        self.avg_pool = fluid.dygraph.Pool2D(
            pool_type="avg", global_pooling=True, use_cudnn=False)
        self.conv1 = fluid.dygraph.Conv2D(
            num_channels=channel,
            num_filters=channel // reduction,
            filter_size=1,
            stride=1,
            padding=0,
            act="relu",
            param_attr=ParamAttr(name=name + "_1_weights"),
            bias_attr=ParamAttr(name=name + "_1_offset"))
        self.conv2 = fluid.dygraph.Conv2D(
            num_channels=channel // reduction,
            num_filters=channel,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            param_attr=ParamAttr(name + "_2_weights"),
            bias_attr=ParamAttr(name=name + "_2_offset"))

    def forward(self, inputs):
        outputs = self.avg_pool(inputs)
        outputs = self.conv1(outputs)
        outputs = self.conv2(outputs)
        outputs = fluid.layers.hard_sigmoid(outputs)
        return fluid.layers.elementwise_mul(x=inputs, y=outputs, axis=0)


def MobileNetV3_small_x0_35(**kwargs):
    model = MobileNetV3(model_name="small", scale=0.35, **kwargs)
    return model


def MobileNetV3_small_x0_5(**kwargs):
    model = MobileNetV3(model_name="small", scale=0.5, **kwargs)
    return model


def MobileNetV3_small_x0_75(**kwargs):
    model = MobileNetV3(model_name="small", scale=0.75, **kwargs)
    return model

C
chenguowei01 已提交
417

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
@manager.BACKBONES.add_component
def MobileNetV3_small_x1_0(**kwargs):
    model = MobileNetV3(model_name="small", scale=1.0, **kwargs)
    return model


def MobileNetV3_small_x1_25(**kwargs):
    model = MobileNetV3(model_name="small", scale=1.25, **kwargs)
    return model


def MobileNetV3_large_x0_35(**kwargs):
    model = MobileNetV3(model_name="large", scale=0.35, **kwargs)
    return model


def MobileNetV3_large_x0_5(**kwargs):
    model = MobileNetV3(model_name="large", scale=0.5, **kwargs)
    return model


def MobileNetV3_large_x0_75(**kwargs):
    model = MobileNetV3(model_name="large", scale=0.75, **kwargs)
    return model

C
chenguowei01 已提交
443

444 445 446 447 448 449 450 451 452
@manager.BACKBONES.add_component
def MobileNetV3_large_x1_0(**kwargs):
    model = MobileNetV3(model_name="large", scale=1.0, **kwargs)
    return model


def MobileNetV3_large_x1_25(**kwargs):
    model = MobileNetV3(model_name="large", scale=1.25, **kwargs)
    return model