loss.py 5.0 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import paddle.fluid as fluid
import numpy as np
import importlib
from utils.config import cfg


def softmax_with_loss(logit, label, ignore_mask=None, num_classes=2):
    ignore_mask = fluid.layers.cast(ignore_mask, 'float32')
    label = fluid.layers.elementwise_min(
        label, fluid.layers.assign(np.array([num_classes - 1], dtype=np.int32)))
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.reshape(logit, [-1, num_classes])
    label = fluid.layers.reshape(label, [-1, 1])
    label = fluid.layers.cast(label, 'int64')
    ignore_mask = fluid.layers.reshape(ignore_mask, [-1, 1])
32

W
wuzewu 已提交
33 34 35 36 37 38 39
    loss, probs = fluid.layers.softmax_with_cross_entropy(
        logit,
        label,
        ignore_index=cfg.DATASET.IGNORE_INDEX,
        return_softmax=True)

    loss = loss * ignore_mask
40 41
    avg_loss = fluid.layers.mean(loss) / fluid.layers.mean(ignore_mask)

W
wuzewu 已提交
42 43 44 45
    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return avg_loss

W
wuyefeilin 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
# to change, how to appicate ignore index and ignore mask
def dice_loss(logit, label, ignore_mask=None, epsilon=0.00001):
    if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1:
        raise Exception("dice loss is only applicable to one channel classfication")
    ignore_mask = fluid.layers.cast(ignore_mask, 'float32')
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    label  = fluid.layers.transpose(label, [0, 2, 3, 1])
    label = fluid.layers.cast(label, 'int64')
    ignore_mask = fluid.layers.transpose(ignore_mask, [0, 2, 3, 1])
    logit = fluid.layers.sigmoid(logit)
    logit = logit * ignore_mask
    label = label * ignore_mask
    reduce_dim = list(range(1, len(logit.shape)))
    inse = fluid.layers.reduce_sum(logit * label, dim=reduce_dim)
    dice_denominator = fluid.layers.reduce_sum(
        logit, dim=reduce_dim) + fluid.layers.reduce_sum(
        label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return fluid.layers.reduce_mean(dice_score)

def bce_loss(logit, label, ignore_mask=None):
    if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1:
        raise Exception("bce loss is only applicable to binary classfication")
    label = fluid.layers.cast(label, 'float32')
    loss = fluid.layers.sigmoid_cross_entropy_with_logits(
        x=logit,
        label=label,
        ignore_index=cfg.DATASET.IGNORE_INDEX,
        normalize=True) # or False
    loss = fluid.layers.reduce_sum(loss)
    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return loss

W
wuzewu 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

def multi_softmax_with_loss(logits, label, ignore_mask=None, num_classes=2):
    if isinstance(logits, tuple):
        avg_loss = 0
        for i, logit in enumerate(logits):
            logit_label = fluid.layers.resize_nearest(label, logit.shape[2:])
            logit_mask = (logit_label.astype('int32') !=
                          cfg.DATASET.IGNORE_INDEX).astype('int32')
            loss = softmax_with_loss(logit, logit_label, logit_mask,
                                     num_classes)
            avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss
    else:
        avg_loss = softmax_with_loss(logits, label, ignore_mask, num_classes)
    return avg_loss

W
wuyefeilin 已提交
97 98 99 100 101 102 103 104 105 106 107 108
def multi_dice_loss(logits, label, ignore_mask=None):
    if isinstance(logits, tuple):
        avg_loss = 0
        for i, logit in enumerate(logits):
            logit_label = fluid.layers.resize_nearest(label, logit.shape[2:])
            logit_mask = (logit_label.astype('int32') !=
                          cfg.DATASET.IGNORE_INDEX).astype('int32')
            loss = dice_loss(logit, logit_label, logit_mask)
            avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss
    else:
        avg_loss = dice_loss(logits, label, ignore_mask)
    return avg_loss
W
wuzewu 已提交
109

W
wuyefeilin 已提交
110 111 112 113 114 115 116 117 118 119 120 121
def multi_bce_loss(logits, label, ignore_mask=None):
    if isinstance(logits, tuple):
        avg_loss = 0
        for i, logit in enumerate(logits):
            logit_label = fluid.layers.resize_nearest(label, logit.shape[2:])
            logit_mask = (logit_label.astype('int32') !=
                          cfg.DATASET.IGNORE_INDEX).astype('int32')
            loss = bce_loss(logit, logit_label, logit_mask)
            avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss
    else:
        avg_loss = bce_loss(logits, label, ignore_mask)
    return avg_loss