infer.py 9.0 KB
Newer Older
S
sjtubinlong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

import numpy as np
import cv2

import paddle.fluid as fluid


S
sjtubinlong 已提交
25
def get_round(data):
S
sjtubinlong 已提交
26
    """
S
sjtubinlong 已提交
27
    get round of data
S
sjtubinlong 已提交
28
    """
S
sjtubinlong 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    round = 0.5 if data >= 0 else -0.5
    return (int)(data + round)


def human_seg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow):
    """
    human segmentation tracking
    """
    check_thres = 8
    h, w = pre_gray.shape[:2]
    track_cfd = np.zeros_like(prev_cfd)
    is_track = np.zeros_like(pre_gray)
    flow_fw = disflow.calc(pre_gray, cur_gray, None)
    flow_bw = disflow.calc(cur_gray, pre_gray, None)
    for r in range(h):
        for c in range(w):
            fxy_fw = flow_fw[r, c]
            dx_fw = get_round(fxy_fw[0])
            cur_x = dx_fw + c
            dy_fw = get_round(fxy_fw[1])
            cur_y = dy_fw + r
            if cur_x < 0 or cur_x >= w or cur_y < 0 or cur_y >= h:
                continue
            fxy_bw = flow_bw[cur_y, cur_x]
            dx_bw = get_round(fxy_bw[0])
            dy_bw = get_round(fxy_bw[1])
            if ((dy_fw + dy_bw) * (dy_fw + dy_bw) + (dx_fw + dx_bw) * (dx_fw + dx_bw)) >= check_thres:
                continue
            if abs(dy_fw) <= 0 and abs(dx_fw) <= 0 and abs(dy_bw) <= 0 and abs(dx_bw) <= 0:
                dl_weights[cur_y, cur_x] = 0.05
            is_track[cur_y, cur_x] = 1
            track_cfd[cur_y, cur_x] = prev_cfd[r, c]

    return track_cfd, is_track, dl_weights


def human_seg_track_fuse(track_cfd, dl_cfd, dl_weights, is_track):
    """
    human segmentation tracking fuse
    """
    cur_cfd = dl_cfd.copy()
    idxs = np.where(is_track > 0)
    for i in range(len(idxs)):
        x, y = idxs[0][i], idxs[1][i]
        dl_score = dl_cfd[y, x]
        track_score = track_cfd[y, x]
        if dl_score > 0.9 or dl_score < 0.1:
            if dl_weights[x, y] < 0.1:
                cur_cfd[x, y] = 0.3 * dl_score + 0.7 * track_score
            else:
                cur_cfd[x, y] = 0.4 * dl_score + 0.6 * track_score
        else:
            cur_cfd[x, y] = dl_weights[x,y]*dl_score + (1-dl_weights[x,y])*track_score
    return cur_cfd


def threshold_mask(img, thresh_bg, thresh_fg):
    """
    threshold mask
    """
    dst = (img / 255.0 - thresh_bg) / (thresh_fg - thresh_bg)
    dst[np.where(dst > 1)] = 1
    dst[np.where(dst < 0)] = 0
    return dst.astype(np.float32)


def optflow_handle(cur_gray, scoremap, prev_gray, pre_cfd, disflow, is_init):
    """
    optical flow handling
    """
    w, h = scoremap.shape[0], scoremap.shape[1]
    cur_cfd = scoremap.copy()
    if is_init:
        is_init = False
        if h <= 64 or w <= 64:
            disflow.setFinestScale(1)
        elif h <= 160 or w <= 160:
            disflow.setFinestScale(2)
        else:
            disflow.setFinestScale(3)
        fusion_cfd = cur_cfd
S
sjtubinlong 已提交
110
    else:
S
sjtubinlong 已提交
111 112 113 114 115
        weights = np.ones((w,h), np.float32) * 0.3
        track_cfd, is_track, weights = human_seg_tracking(prev_gray, cur_gray, pre_cfd,  weights, disflow)
        fusion_cfd = human_seg_track_fuse(track_cfd, cur_cfd, weights, is_track)
    fusion_cfd = cv2.GaussianBlur(fusion_cfd, (3,3), 0)
    return fusion_cfd
S
sjtubinlong 已提交
116 117 118


class HumanSeg:
S
sjtubinlong 已提交
119 120 121
    """
    Human Segmentation Class
    """
S
sjtubinlong 已提交
122 123 124 125
    def __init__(self, model_dir, mean, scale, eval_size, use_gpu=False):
        self.mean = np.array(mean).reshape((3, 1, 1))
        self.scale = np.array(scale).reshape((3, 1, 1))
        self.eval_size = eval_size
S
sjtubinlong 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        self.load_model(model_dir, use_gpu)

    def load_model(self, model_dir, use_gpu):
        """
        Load model from model_dir
        """
        prog_file = os.path.join(model_dir, '__model__')
        params_file = os.path.join(model_dir, '__params__')
        config = fluid.core.AnalysisConfig(prog_file, params_file)
        if use_gpu:
            config.enable_use_gpu(100, 0)
            config.switch_ir_optim(True)
        else:
            config.disable_gpu()
        config.disable_glog_info()
        config.switch_specify_input_names(True)
        config.enable_memory_optim()
        self.predictor = fluid.core.create_paddle_predictor(config)
S
sjtubinlong 已提交
144

S
sjtubinlong 已提交
145 146 147 148 149
    def preprocess(self, image):
        """
        preprocess image: hwc_rgb to chw_bgr
        """
        img_mat = cv2.resize(
S
sjtubinlong 已提交
150
            image, self.eval_size, interpolation=cv2.INTER_LINEAR)
S
sjtubinlong 已提交
151
        # HWC -> CHW
S
sjtubinlong 已提交
152 153
        img_mat = img_mat.swapaxes(1, 2)
        img_mat = img_mat.swapaxes(0, 1)
S
sjtubinlong 已提交
154
        # Convert to float
S
sjtubinlong 已提交
155 156 157 158 159 160 161 162 163 164 165
        img_mat = img_mat[:, :, :].astype('float32')
        # img_mat = (img_mat - mean) * scale
        img_mat = img_mat - self.mean
        img_mat = img_mat * self.scale
        img_mat = img_mat[np.newaxis, :, :, :]
        return img_mat

    def postprocess(self, image, output_data):
        """
        postprocess result: merge background with segmentation result
        """
S
sjtubinlong 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        scoremap = output_data[0, 1, :, :]
        scoremap = (scoremap * 255).astype(np.uint8)
        ori_h, ori_w = image.shape[0], image.shape[1]
        evl_h, evl_w = self.eval_size[0], self.eval_size[1]
        disflow = cv2.DISOpticalFlow_create(
            cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
        prev_gray = np.zeros((evl_h, evl_w), np.uint8)
        prev_cfd = np.zeros((evl_h, evl_w), np.float32)
        cur_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        cur_gray = cv2.resize(cur_gray, (evl_w, evl_h))
        optflow_map = optflow_handle(cur_gray, scoremap, prev_gray, prev_cfd, disflow, False)
        optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
        optflow_map = threshold_mask(optflow_map, thresh_bg=0.2, thresh_fg=0.8)
        optflow_map = cv2.resize(optflow_map, (ori_w, ori_h))
        optflow_map = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
        bg = np.ones_like(optflow_map) * 255
        comb = (optflow_map * image + (1 - optflow_map) * bg).astype(np.uint8)
        return comb
S
sjtubinlong 已提交
184

S
sjtubinlong 已提交
185 186 187 188
    def run_predict(self, image):
        """
        run predict: return segmentation image mat
        """
S
sjtubinlong 已提交
189
        ori_im = image.copy()
S
sjtubinlong 已提交
190 191
        im_mat = self.preprocess(ori_im)
        im_tensor = fluid.core.PaddleTensor(im_mat.copy().astype('float32'))
S
sjtubinlong 已提交
192 193
        output_data = self.predictor.run([im_tensor])[0]
        output_data = output_data.as_ndarray()
S
sjtubinlong 已提交
194
        return self.postprocess(image, output_data)
S
sjtubinlong 已提交
195

S
sjtubinlong 已提交
196

S
sjtubinlong 已提交
197 198
def predict_image(seg, image_path):
    """
S
sjtubinlong 已提交
199
    Do Predicting on a single image
S
sjtubinlong 已提交
200 201 202 203
    """
    img_mat = cv2.imread(image_path)
    img_mat = seg.run_predict(img_mat)
    cv2.imwrite('result.jpeg', img_mat)
S
sjtubinlong 已提交
204 205


S
sjtubinlong 已提交
206 207 208 209
def predict_video(seg, video_path):
    """
    Do Predicting on a video
    """
S
sjtubinlong 已提交
210
    cap = cv2.VideoCapture(video_path)
S
sjtubinlong 已提交
211
    if not cap.isOpened():
S
sjtubinlong 已提交
212 213
        print("Error opening video stream or file")
        return
S
sjtubinlong 已提交
214 215
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
S
sjtubinlong 已提交
216 217 218
    fps = cap.get(cv2.CAP_PROP_FPS)
    # Result Video Writer
    out = cv2.VideoWriter('result.avi',
S
sjtubinlong 已提交
219
                          cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps,
S
sjtubinlong 已提交
220
                          (width, height))
S
sjtubinlong 已提交
221
    id = 1
S
sjtubinlong 已提交
222
    # Start capturing from video
S
sjtubinlong 已提交
223
    while cap.isOpened():
S
sjtubinlong 已提交
224
        ret, frame = cap.read()
S
sjtubinlong 已提交
225 226 227
        if ret:
            img_mat = seg.run_predict(frame)
            out.write(img_mat)
S
sjtubinlong 已提交
228 229 230
            id += 1
            if id >= 51:
                break
S
sjtubinlong 已提交
231
        else:
S
sjtubinlong 已提交
232 233 234
            break
    cap.release()
    out.release()
S
sjtubinlong 已提交
235

S
sjtubinlong 已提交
236

S
sjtubinlong 已提交
237 238
def predict_camera(seg):
    """
S
sjtubinlong 已提交
239
    Do Predicting on a camera video stream: Press q to exit
S
sjtubinlong 已提交
240
    """
S
sjtubinlong 已提交
241
    cap = cv2.VideoCapture(0)
S
sjtubinlong 已提交
242
    if not cap.isOpened():
S
sjtubinlong 已提交
243 244 245
        print("Error opening video stream or file")
        return
    # Start capturing from video
S
sjtubinlong 已提交
246
    while cap.isOpened():
S
sjtubinlong 已提交
247
        ret, frame = cap.read()
S
sjtubinlong 已提交
248
        if ret:
S
sjtubinlong 已提交
249
            img_mat = seg.run_predict(frame)
S
sjtubinlong 已提交
250
            cv2.imshow('HumanSegmentation', img_mat)
S
sjtubinlong 已提交
251 252
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
S
sjtubinlong 已提交
253
        else:
S
sjtubinlong 已提交
254 255 256
            break
    cap.release()

S
sjtubinlong 已提交
257

S
sjtubinlong 已提交
258 259 260 261 262
def main(argv):
    """
    Entrypoint of the script
    """
    if len(argv) < 3:
S
sjtubinlong 已提交
263
        print('Usage: python infer.py /path/to/model/ /path/to/video')
S
sjtubinlong 已提交
264
        return
S
sjtubinlong 已提交
265 266 267 268

    model_dir = sys.argv[1]
    input_path = sys.argv[2]
    use_gpu = int(sys.argv[3]) if len(sys.argv) >= 4 else 0
S
sjtubinlong 已提交
269
    # Init model
S
sjtubinlong 已提交
270 271 272 273
    mean = [104.008, 116.669, 122.675]
    scale = [1.0, 1.0, 1.0]
    eval_size = (192, 192)
    seg = HumanSeg(model_dir, mean, scale, eval_size, use_gpu)
S
sjtubinlong 已提交
274
    # Run Predicting on a video and result will be saved as result.avi
S
sjtubinlong 已提交
275 276 277
    predict_camera(seg)
    #predict_video(seg, input_path)
    #predict_image(seg, input_path)
S
sjtubinlong 已提交
278 279 280 281


if __name__ == "__main__":
    main(sys.argv)