Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
dba49e1d
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
286
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dba49e1d
编写于
3月 31, 2020
作者:
S
sjtubinlong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add optical flow process
上级
8d56d6d7
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
137 addition
and
26 deletion
+137
-26
contrib/RealTimeHumanSeg/python/infer.py
contrib/RealTimeHumanSeg/python/infer.py
+137
-26
未找到文件。
contrib/RealTimeHumanSeg/python/infer.py
浏览文件 @
dba49e1d
...
...
@@ -22,22 +22,97 @@ import cv2
import
paddle.fluid
as
fluid
def
load_model
(
model_dir
,
use_gpu
=
False
):
def
get_round
(
data
):
"""
Load model files and init paddle predictor
get round of data
"""
prog_file
=
os
.
path
.
join
(
model_dir
,
'__model__'
)
params_file
=
os
.
path
.
join
(
model_dir
,
'__params__'
)
config
=
fluid
.
core
.
AnalysisConfig
(
prog_file
,
params_file
)
if
use_gpu
:
config
.
enable_use_gpu
(
100
,
0
)
config
.
switch_ir_optim
(
True
)
round
=
0.5
if
data
>=
0
else
-
0.5
return
(
int
)(
data
+
round
)
def
human_seg_tracking
(
pre_gray
,
cur_gray
,
prev_cfd
,
dl_weights
,
disflow
):
"""
human segmentation tracking
"""
check_thres
=
8
h
,
w
=
pre_gray
.
shape
[:
2
]
track_cfd
=
np
.
zeros_like
(
prev_cfd
)
is_track
=
np
.
zeros_like
(
pre_gray
)
flow_fw
=
disflow
.
calc
(
pre_gray
,
cur_gray
,
None
)
flow_bw
=
disflow
.
calc
(
cur_gray
,
pre_gray
,
None
)
for
r
in
range
(
h
):
for
c
in
range
(
w
):
fxy_fw
=
flow_fw
[
r
,
c
]
dx_fw
=
get_round
(
fxy_fw
[
0
])
cur_x
=
dx_fw
+
c
dy_fw
=
get_round
(
fxy_fw
[
1
])
cur_y
=
dy_fw
+
r
if
cur_x
<
0
or
cur_x
>=
w
or
cur_y
<
0
or
cur_y
>=
h
:
continue
fxy_bw
=
flow_bw
[
cur_y
,
cur_x
]
dx_bw
=
get_round
(
fxy_bw
[
0
])
dy_bw
=
get_round
(
fxy_bw
[
1
])
if
((
dy_fw
+
dy_bw
)
*
(
dy_fw
+
dy_bw
)
+
(
dx_fw
+
dx_bw
)
*
(
dx_fw
+
dx_bw
))
>=
check_thres
:
continue
if
abs
(
dy_fw
)
<=
0
and
abs
(
dx_fw
)
<=
0
and
abs
(
dy_bw
)
<=
0
and
abs
(
dx_bw
)
<=
0
:
dl_weights
[
cur_y
,
cur_x
]
=
0.05
is_track
[
cur_y
,
cur_x
]
=
1
track_cfd
[
cur_y
,
cur_x
]
=
prev_cfd
[
r
,
c
]
return
track_cfd
,
is_track
,
dl_weights
def
human_seg_track_fuse
(
track_cfd
,
dl_cfd
,
dl_weights
,
is_track
):
"""
human segmentation tracking fuse
"""
cur_cfd
=
dl_cfd
.
copy
()
idxs
=
np
.
where
(
is_track
>
0
)
for
i
in
range
(
len
(
idxs
)):
x
,
y
=
idxs
[
0
][
i
],
idxs
[
1
][
i
]
dl_score
=
dl_cfd
[
y
,
x
]
track_score
=
track_cfd
[
y
,
x
]
if
dl_score
>
0.9
or
dl_score
<
0.1
:
if
dl_weights
[
x
,
y
]
<
0.1
:
cur_cfd
[
x
,
y
]
=
0.3
*
dl_score
+
0.7
*
track_score
else
:
cur_cfd
[
x
,
y
]
=
0.4
*
dl_score
+
0.6
*
track_score
else
:
cur_cfd
[
x
,
y
]
=
dl_weights
[
x
,
y
]
*
dl_score
+
(
1
-
dl_weights
[
x
,
y
])
*
track_score
return
cur_cfd
def
threshold_mask
(
img
,
thresh_bg
,
thresh_fg
):
"""
threshold mask
"""
dst
=
(
img
/
255.0
-
thresh_bg
)
/
(
thresh_fg
-
thresh_bg
)
dst
[
np
.
where
(
dst
>
1
)]
=
1
dst
[
np
.
where
(
dst
<
0
)]
=
0
return
dst
.
astype
(
np
.
float32
)
def
optflow_handle
(
cur_gray
,
scoremap
,
prev_gray
,
pre_cfd
,
disflow
,
is_init
):
"""
optical flow handling
"""
w
,
h
=
scoremap
.
shape
[
0
],
scoremap
.
shape
[
1
]
cur_cfd
=
scoremap
.
copy
()
if
is_init
:
is_init
=
False
if
h
<=
64
or
w
<=
64
:
disflow
.
setFinestScale
(
1
)
elif
h
<=
160
or
w
<=
160
:
disflow
.
setFinestScale
(
2
)
else
:
disflow
.
setFinestScale
(
3
)
fusion_cfd
=
cur_cfd
else
:
config
.
disable_gpu
()
config
.
disable_glog_info
(
)
config
.
switch_specify_input_names
(
True
)
config
.
enable_memory_optim
(
)
return
f
luid
.
core
.
create_paddle_predictor
(
config
)
weights
=
np
.
ones
((
w
,
h
),
np
.
float32
)
*
0.3
track_cfd
,
is_track
,
weights
=
human_seg_tracking
(
prev_gray
,
cur_gray
,
pre_cfd
,
weights
,
disflow
)
fusion_cfd
=
human_seg_track_fuse
(
track_cfd
,
cur_cfd
,
weights
,
is_track
)
fusion_cfd
=
cv2
.
GaussianBlur
(
fusion_cfd
,
(
3
,
3
),
0
)
return
f
usion_cfd
class
HumanSeg
:
...
...
@@ -48,14 +123,31 @@ class HumanSeg:
self
.
mean
=
np
.
array
(
mean
).
reshape
((
3
,
1
,
1
))
self
.
scale
=
np
.
array
(
scale
).
reshape
((
3
,
1
,
1
))
self
.
eval_size
=
eval_size
self
.
predictor
=
load_model
(
model_dir
,
use_gpu
)
self
.
load_model
(
model_dir
,
use_gpu
)
def
load_model
(
self
,
model_dir
,
use_gpu
):
"""
Load model from model_dir
"""
prog_file
=
os
.
path
.
join
(
model_dir
,
'__model__'
)
params_file
=
os
.
path
.
join
(
model_dir
,
'__params__'
)
config
=
fluid
.
core
.
AnalysisConfig
(
prog_file
,
params_file
)
if
use_gpu
:
config
.
enable_use_gpu
(
100
,
0
)
config
.
switch_ir_optim
(
True
)
else
:
config
.
disable_gpu
()
config
.
disable_glog_info
()
config
.
switch_specify_input_names
(
True
)
config
.
enable_memory_optim
()
self
.
predictor
=
fluid
.
core
.
create_paddle_predictor
(
config
)
def
preprocess
(
self
,
image
):
"""
preprocess image: hwc_rgb to chw_bgr
"""
img_mat
=
cv2
.
resize
(
image
,
self
.
eval_size
,
fx
=
0
,
fy
=
0
,
interpolation
=
cv2
.
INTER_CUBIC
)
image
,
self
.
eval_size
,
interpolation
=
cv2
.
INTER_LINEAR
)
# HWC -> CHW
img_mat
=
img_mat
.
swapaxes
(
1
,
2
)
img_mat
=
img_mat
.
swapaxes
(
0
,
1
)
...
...
@@ -71,12 +163,24 @@ class HumanSeg:
"""
postprocess result: merge background with segmentation result
"""
mask
=
output_data
[
0
,
1
,
:,
:]
mask
=
cv2
.
resize
(
mask
,
(
image
.
shape
[
1
],
image
.
shape
[
0
]))
scoremap
=
np
.
repeat
(
mask
[:,
:,
np
.
newaxis
],
3
,
axis
=
2
)
bg_im
=
np
.
ones_like
(
scoremap
)
*
255
merge_im
=
(
scoremap
*
image
+
(
1
-
scoremap
)
*
bg_im
).
astype
(
np
.
uint8
)
return
merge_im
scoremap
=
output_data
[
0
,
1
,
:,
:]
scoremap
=
(
scoremap
*
255
).
astype
(
np
.
uint8
)
ori_h
,
ori_w
=
image
.
shape
[
0
],
image
.
shape
[
1
]
evl_h
,
evl_w
=
self
.
eval_size
[
0
],
self
.
eval_size
[
1
]
disflow
=
cv2
.
DISOpticalFlow_create
(
cv2
.
DISOPTICAL_FLOW_PRESET_ULTRAFAST
)
prev_gray
=
np
.
zeros
((
evl_h
,
evl_w
),
np
.
uint8
)
prev_cfd
=
np
.
zeros
((
evl_h
,
evl_w
),
np
.
float32
)
cur_gray
=
cv2
.
cvtColor
(
image
,
cv2
.
COLOR_BGR2GRAY
)
cur_gray
=
cv2
.
resize
(
cur_gray
,
(
evl_w
,
evl_h
))
optflow_map
=
optflow_handle
(
cur_gray
,
scoremap
,
prev_gray
,
prev_cfd
,
disflow
,
False
)
optflow_map
=
cv2
.
GaussianBlur
(
optflow_map
,
(
3
,
3
),
0
)
optflow_map
=
threshold_mask
(
optflow_map
,
thresh_bg
=
0.2
,
thresh_fg
=
0.8
)
optflow_map
=
cv2
.
resize
(
optflow_map
,
(
ori_w
,
ori_h
))
optflow_map
=
np
.
repeat
(
optflow_map
[:,
:,
np
.
newaxis
],
3
,
axis
=
2
)
bg
=
np
.
ones_like
(
optflow_map
)
*
255
comb
=
(
optflow_map
*
image
+
(
1
-
optflow_map
)
*
bg
).
astype
(
np
.
uint8
)
return
comb
def
run_predict
(
self
,
image
):
"""
...
...
@@ -92,7 +196,7 @@ class HumanSeg:
def
predict_image
(
seg
,
image_path
):
"""
Do Predicting on a image
Do Predicting on a
single
image
"""
img_mat
=
cv2
.
imread
(
image_path
)
img_mat
=
seg
.
run_predict
(
img_mat
)
...
...
@@ -114,20 +218,25 @@ def predict_video(seg, video_path):
out
=
cv2
.
VideoWriter
(
'result.avi'
,
cv2
.
VideoWriter_fourcc
(
'M'
,
'J'
,
'P'
,
'G'
),
fps
,
(
width
,
height
))
id
=
1
# Start capturing from video
while
cap
.
isOpened
():
ret
,
frame
=
cap
.
read
()
if
ret
:
img_mat
=
seg
.
run_predict
(
frame
)
out
.
write
(
img_mat
)
id
+=
1
if
id
>=
51
:
break
else
:
break
cap
.
release
()
out
.
release
()
def
predict_camera
(
seg
):
"""
Do Predicting on a camera video stream
Do Predicting on a camera video stream
: Press q to exit
"""
cap
=
cv2
.
VideoCapture
(
0
)
if
not
cap
.
isOpened
():
...
...
@@ -138,13 +247,14 @@ def predict_camera(seg):
ret
,
frame
=
cap
.
read
()
if
ret
:
img_mat
=
seg
.
run_predict
(
frame
)
cv2
.
imshow
(
'
Frame
'
,
img_mat
)
cv2
.
imshow
(
'
HumanSegmentation
'
,
img_mat
)
if
cv2
.
waitKey
(
1
)
&
0xFF
==
ord
(
'q'
):
break
else
:
break
cap
.
release
()
def
main
(
argv
):
"""
Entrypoint of the script
...
...
@@ -162,8 +272,9 @@ def main(argv):
eval_size
=
(
192
,
192
)
seg
=
HumanSeg
(
model_dir
,
mean
,
scale
,
eval_size
,
use_gpu
)
# Run Predicting on a video and result will be saved as result.avi
# predict_camera(seg)
predict_video
(
seg
,
input_path
)
predict_camera
(
seg
)
#predict_video(seg, input_path)
#predict_image(seg, input_path)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录