hrnet.py 29.2 KB
Newer Older
C
chenguowei01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
C
chenguowei01 已提交
16
import os
C
chenguowei01 已提交
17 18 19 20 21

import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
R
root 已提交
22
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
23
from paddle.fluid.initializer import Normal
24 25 26
from paddle.nn import SyncBatchNorm as BatchNorm

from dygraph.cvlibs import manager
C
chenguowei01 已提交
27 28
from dygraph.utils import utils
from dygraph.cvlibs import param_init
C
chenguowei01 已提交
29 30 31

__all__ = [
    "HRNet_W18_Small_V1", "HRNet_W18_Small_V2", "HRNet_W18", "HRNet_W30",
32
    "HRNet_W32", "HRNet_W40", "HRNet_W44", "HRNet_W48", "HRNet_W60", "HRNet_W64"
C
chenguowei01 已提交
33 34 35 36
]


class HRNet(fluid.dygraph.Layer):
37
    """
C
chenguowei01 已提交
38 39 40 41
    HRNet:Deep High-Resolution Representation Learning for Visual Recognition
    https://arxiv.org/pdf/1908.07919.pdf.

    Args:
C
chenguowei01 已提交
42
        backbone_pretrained (str): the path of pretrained model.
C
chenguowei01 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55
        stage1_num_modules (int): number of modules for stage1. Default 1.
        stage1_num_blocks (list): number of blocks per module for stage1. Default [4].
        stage1_num_channels (list): number of channels per branch for stage1. Default [64].
        stage2_num_modules (int): number of modules for stage2. Default 1.
        stage2_num_blocks (list): number of blocks per module for stage2. Default [4, 4]
        stage2_num_channels (list): number of channels per branch for stage2. Default [18, 36].
        stage3_num_modules (int): number of modules for stage3. Default 4.
        stage3_num_blocks (list): number of blocks per module for stage3. Default [4, 4, 4]
        stage3_num_channels (list): number of channels per branch for stage3. Default [18, 36, 72].
        stage4_num_modules (int): number of modules for stage4. Default 3.
        stage4_num_blocks (list): number of blocks per module for stage4. Default [4, 4, 4, 4]
        stage4_num_channels (list): number of channels per branch for stage4. Default [18, 36, 72. 144].
        has_se (bool): whether to use Squeeze-and-Excitation module. Default False.
56 57
    """

C
chenguowei01 已提交
58
    def __init__(self,
C
chenguowei01 已提交
59
                 backbone_pretrained=None,
C
chenguowei01 已提交
60 61 62 63 64 65 66 67 68 69 70 71
                 stage1_num_modules=1,
                 stage1_num_blocks=[4],
                 stage1_num_channels=[64],
                 stage2_num_modules=1,
                 stage2_num_blocks=[4, 4],
                 stage2_num_channels=[18, 36],
                 stage3_num_modules=4,
                 stage3_num_blocks=[4, 4, 4],
                 stage3_num_channels=[18, 36, 72],
                 stage4_num_modules=3,
                 stage4_num_blocks=[4, 4, 4, 4],
                 stage4_num_channels=[18, 36, 72, 144],
72
                 has_se=False):
C
chenguowei01 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        super(HRNet, self).__init__()

        self.stage1_num_modules = stage1_num_modules
        self.stage1_num_blocks = stage1_num_blocks
        self.stage1_num_channels = stage1_num_channels
        self.stage2_num_modules = stage2_num_modules
        self.stage2_num_blocks = stage2_num_blocks
        self.stage2_num_channels = stage2_num_channels
        self.stage3_num_modules = stage3_num_modules
        self.stage3_num_blocks = stage3_num_blocks
        self.stage3_num_channels = stage3_num_channels
        self.stage4_num_modules = stage4_num_modules
        self.stage4_num_blocks = stage4_num_blocks
        self.stage4_num_channels = stage4_num_channels
        self.has_se = has_se

        self.conv_layer1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=64,
            filter_size=3,
            stride=2,
            act='relu',
            name="layer1_1")

        self.conv_layer1_2 = ConvBNLayer(
            num_channels=64,
            num_filters=64,
            filter_size=3,
            stride=2,
            act='relu',
            name="layer1_2")

        self.la1 = Layer1(
C
chenguowei01 已提交
106 107 108
            num_channels=64,
            num_blocks=self.stage1_num_blocks[0],
            num_filters=self.stage1_num_channels[0],
C
chenguowei01 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            has_se=has_se,
            name="layer2")

        self.tr1 = TransitionLayer(
            in_channels=[self.stage1_num_channels[0] * 4],
            out_channels=self.stage2_num_channels,
            name="tr1")

        self.st2 = Stage(
            num_channels=self.stage2_num_channels,
            num_modules=self.stage2_num_modules,
            num_blocks=self.stage2_num_blocks,
            num_filters=self.stage2_num_channels,
            has_se=self.has_se,
            name="st2")

        self.tr2 = TransitionLayer(
            in_channels=self.stage2_num_channels,
            out_channels=self.stage3_num_channels,
            name="tr2")
        self.st3 = Stage(
            num_channels=self.stage3_num_channels,
            num_modules=self.stage3_num_modules,
            num_blocks=self.stage3_num_blocks,
            num_filters=self.stage3_num_channels,
134
            has_se=self.has_se,
C
chenguowei01 已提交
135 136 137 138 139 140 141 142 143 144 145
            name="st3")

        self.tr3 = TransitionLayer(
            in_channels=self.stage3_num_channels,
            out_channels=self.stage4_num_channels,
            name="tr3")
        self.st4 = Stage(
            num_channels=self.stage4_num_channels,
            num_modules=self.stage4_num_modules,
            num_blocks=self.stage4_num_blocks,
            num_filters=self.stage4_num_channels,
146
            has_se=self.has_se,
C
chenguowei01 已提交
147 148
            name="st4")

C
chenguowei01 已提交
149 150
        if self.training:
            self.init_weight(backbone_pretrained)
C
chenguowei01 已提交
151

C
chenguowei01 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    def forward(self, x, label=None, mode='train'):
        input_shape = x.shape[2:]
        conv1 = self.conv_layer1_1(x)
        conv2 = self.conv_layer1_2(conv1)

        la1 = self.la1(conv2)

        tr1 = self.tr1([la1])
        st2 = self.st2(tr1)

        tr2 = self.tr2(st2)
        st3 = self.st3(tr2)

        tr3 = self.tr3(st3)
        st4 = self.st4(tr3)

        x0_h, x0_w = st4[0].shape[2:]
        x1 = fluid.layers.resize_bilinear(st4[1], out_shape=(x0_h, x0_w))
        x2 = fluid.layers.resize_bilinear(st4[2], out_shape=(x0_h, x0_w))
        x3 = fluid.layers.resize_bilinear(st4[3], out_shape=(x0_h, x0_w))
        x = fluid.layers.concat([st4[0], x1, x2, x3], axis=1)
173

C
chenguowei01 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        return [x]

    def init_weight(self, pretrained_model=None):
        """
        Initialize the parameters of model parts.
        Args:
            pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
        """
        params = self.parameters()
        for param in params:
            param_name = param.name
            if 'batch_norm' in param_name:
                if 'w_0' in param_name:
                    param_init.constant_init(param, 1.0)
                elif 'b_0' in param_name:
                    param_init.constant_init(param, 0.0)
            if 'conv' in param_name and 'w_0' in param_name:
                param_init.normal_init(param, scale=0.001)

        if pretrained_model is not None:
            if os.path.exists(pretrained_model):
                utils.load_pretrained_model(self, pretrained_model)
            else:
                raise Exception('Pretrained model is not found: {}'.format(
                    pretrained_model))
C
chenguowei01 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            bias_attr=False)
C
chenguowei01 已提交
220
        self._batch_norm = BatchNorm(num_filters)
C
chenguowei01 已提交
221
        self.act = act
C
chenguowei01 已提交
222 223 224 225

    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
C
chenguowei01 已提交
226 227
        if self.act == 'relu':
            y = fluid.layers.relu(y)
C
chenguowei01 已提交
228 229 230 231
        return y


class Layer1(fluid.dygraph.Layer):
C
chenguowei01 已提交
232 233 234 235 236 237
    def __init__(self,
                 num_channels,
                 num_filters,
                 num_blocks,
                 has_se=False,
                 name=None):
C
chenguowei01 已提交
238 239 240 241
        super(Layer1, self).__init__()

        self.bottleneck_block_list = []

C
chenguowei01 已提交
242
        for i in range(num_blocks):
C
chenguowei01 已提交
243 244 245
            bottleneck_block = self.add_sublayer(
                "bb_{}_{}".format(name, i + 1),
                BottleneckBlock(
C
chenguowei01 已提交
246 247
                    num_channels=num_channels if i == 0 else num_filters * 4,
                    num_filters=num_filters,
C
chenguowei01 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
                    has_se=has_se,
                    stride=1,
                    downsample=True if i == 0 else False,
                    name=name + '_' + str(i + 1)))
            self.bottleneck_block_list.append(bottleneck_block)

    def forward(self, input):
        conv = input
        for block_func in self.bottleneck_block_list:
            conv = block_func(conv)
        return conv


class TransitionLayer(fluid.dygraph.Layer):
    def __init__(self, in_channels, out_channels, name=None):
        super(TransitionLayer, self).__init__()

        num_in = len(in_channels)
        num_out = len(out_channels)
        self.conv_bn_func_list = []
        for i in range(num_out):
            residual = None
            if i < num_in:
                if in_channels[i] != out_channels[i]:
                    residual = self.add_sublayer(
                        "transition_{}_layer_{}".format(name, i + 1),
                        ConvBNLayer(
                            num_channels=in_channels[i],
                            num_filters=out_channels[i],
                            filter_size=3,
                            name=name + '_layer_' + str(i + 1)))
            else:
                residual = self.add_sublayer(
                    "transition_{}_layer_{}".format(name, i + 1),
                    ConvBNLayer(
                        num_channels=in_channels[-1],
                        num_filters=out_channels[i],
                        filter_size=3,
                        stride=2,
                        name=name + '_layer_' + str(i + 1)))
            self.conv_bn_func_list.append(residual)

    def forward(self, input):
        outs = []
        for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
            if conv_bn_func is None:
                outs.append(input[idx])
            else:
                if idx < len(input):
                    outs.append(conv_bn_func(input[idx]))
                else:
                    outs.append(conv_bn_func(input[-1]))
        return outs


class Branches(fluid.dygraph.Layer):
    def __init__(self,
                 num_blocks,
                 in_channels,
                 out_channels,
                 has_se=False,
                 name=None):
        super(Branches, self).__init__()

        self.basic_block_list = []

        for i in range(len(out_channels)):
            self.basic_block_list.append([])
            for j in range(num_blocks[i]):
                in_ch = in_channels[i] if j == 0 else out_channels[i]
                basic_block_func = self.add_sublayer(
                    "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
                    BasicBlock(
                        num_channels=in_ch,
                        num_filters=out_channels[i],
                        has_se=has_se,
                        name=name + '_branch_layer_' + str(i + 1) + '_' +
                        str(j + 1)))
                self.basic_block_list[i].append(basic_block_func)

    def forward(self, inputs):
        outs = []
        for idx, input in enumerate(inputs):
            conv = input
            for basic_block_func in self.basic_block_list[idx]:
                conv = basic_block_func(conv)
            outs.append(conv)
        return outs


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se,
                 stride=1,
                 downsample=False,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act="relu",
            name=name + "_conv1",
        )
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_conv2")
        self.conv3 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_conv3")

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                act=None,
                name=name + "_downsample")

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters * 4,
                num_filters=num_filters * 4,
                reduction_ratio=16,
                name=name + '_fc')

    def forward(self, input):
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv3 = self.se(conv3)

        y = fluid.layers.elementwise_add(x=conv3, y=residual, act="relu")
        return y


class BasicBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride=1,
                 has_se=False,
                 downsample=False,
                 name=None):
        super(BasicBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_conv1")
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
            act=None,
            name=name + "_conv2")

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                act="relu",
                name=name + "_downsample")

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters,
                num_filters=num_filters,
                reduction_ratio=16,
                name=name + '_fc')

    def forward(self, input):
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv2 = self.se(conv2)

        y = fluid.layers.elementwise_add(x=conv2, y=residual, act="relu")
        return y


class SELayer(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

        self.pool2d_gap = Pool2D(pool_type='avg', global_pooling=True)

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
            act="relu",
            param_attr=ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name=name + "_sqz_weights"),
            bias_attr=ParamAttr(name=name + '_sqz_offset'))

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
            act="sigmoid",
            param_attr=ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name=name + "_exc_weights"),
            bias_attr=ParamAttr(name=name + '_exc_offset'))

    def forward(self, input):
        pool = self.pool2d_gap(input)
        pool = fluid.layers.reshape(pool, shape=[-1, self._num_channels])
        squeeze = self.squeeze(pool)
        excitation = self.excitation(squeeze)
        excitation = fluid.layers.reshape(
            excitation, shape=[-1, self._num_channels, 1, 1])
        out = input * excitation
        return out


class Stage(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_modules,
                 num_blocks,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(Stage, self).__init__()

        self._num_modules = num_modules

        self.stage_func_list = []
        for i in range(num_modules):
            if i == num_modules - 1 and not multi_scale_output:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_blocks=num_blocks,
                        num_filters=num_filters,
                        has_se=has_se,
                        multi_scale_output=False,
                        name=name + '_' + str(i + 1)))
            else:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_blocks=num_blocks,
                        num_filters=num_filters,
                        has_se=has_se,
                        name=name + '_' + str(i + 1)))

            self.stage_func_list.append(stage_func)

    def forward(self, input):
        out = input
        for idx in range(self._num_modules):
            out = self.stage_func_list[idx](out)
        return out


class HighResolutionModule(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_blocks,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(HighResolutionModule, self).__init__()

        self.branches_func = Branches(
            num_blocks=num_blocks,
            in_channels=num_channels,
            out_channels=num_filters,
            has_se=has_se,
            name=name)

        self.fuse_func = FuseLayers(
            in_channels=num_filters,
            out_channels=num_filters,
            multi_scale_output=multi_scale_output,
            name=name)

    def forward(self, input):
        out = self.branches_func(input)
        out = self.fuse_func(out)
        return out


class FuseLayers(fluid.dygraph.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 multi_scale_output=True,
                 name=None):
        super(FuseLayers, self).__init__()

        self._actual_ch = len(in_channels) if multi_scale_output else 1
        self._in_channels = in_channels

        self.residual_func_list = []
        for i in range(self._actual_ch):
            for j in range(len(in_channels)):
                residual_func = None
                if j > i:
                    residual_func = self.add_sublayer(
                        "residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
                        ConvBNLayer(
                            num_channels=in_channels[j],
                            num_filters=out_channels[i],
                            filter_size=1,
                            stride=1,
                            act=None,
                            name=name + '_layer_' + str(i + 1) + '_' +
                            str(j + 1)))
                    self.residual_func_list.append(residual_func)
                elif j < i:
                    pre_num_filters = in_channels[j]
                    for k in range(i - j):
                        if k == i - j - 1:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[i],
                                    filter_size=3,
                                    stride=2,
                                    act=None,
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[i]
                        else:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[j],
                                    filter_size=3,
                                    stride=2,
                                    act="relu",
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[j]
                        self.residual_func_list.append(residual_func)

    def forward(self, input):
        outs = []
        residual_func_idx = 0
        for i in range(self._actual_ch):
            residual = input[i]
C
chenguowei01 已提交
637
            residual_shape = residual.shape[-2:]
C
chenguowei01 已提交
638 639 640 641 642
            for j in range(len(self._in_channels)):
                if j > i:
                    y = self.residual_func_list[residual_func_idx](input[j])
                    residual_func_idx += 1

C
chenguowei01 已提交
643 644
                    y = fluid.layers.resize_bilinear(
                        input=y, out_shape=residual_shape)
C
chenguowei01 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
                    residual = fluid.layers.elementwise_add(
                        x=residual, y=y, act=None)
                elif j < i:
                    y = input[j]
                    for k in range(i - j):
                        y = self.residual_func_list[residual_func_idx](y)
                        residual_func_idx += 1

                    residual = fluid.layers.elementwise_add(
                        x=residual, y=y, act=None)

            layer_helper = LayerHelper(self.full_name(), act='relu')
            residual = layer_helper.append_activation(residual)
            outs.append(residual)

        return outs


class LastClsOut(fluid.dygraph.Layer):
    def __init__(self,
                 num_channel_list,
                 has_se,
                 num_filters_list=[32, 64, 128, 256],
                 name=None):
        super(LastClsOut, self).__init__()

        self.func_list = []
        for idx in range(len(num_channel_list)):
            func = self.add_sublayer(
                "conv_{}_conv_{}".format(name, idx + 1),
                BottleneckBlock(
                    num_channels=num_channel_list[idx],
                    num_filters=num_filters_list[idx],
                    has_se=has_se,
                    downsample=True,
                    name=name + 'conv_' + str(idx + 1)))
            self.func_list.append(func)

    def forward(self, inputs):
        outs = []
        for idx, input in enumerate(inputs):
            out = self.func_list[idx](input)
            outs.append(out)
        return outs


691 692
@manager.BACKBONES.add_component
def HRNet_W18_Small_V1(**kwargs):
C
chenguowei01 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705
    model = HRNet(
        stage1_num_modules=1,
        stage1_num_blocks=[1],
        stage1_num_channels=[32],
        stage2_num_modules=1,
        stage2_num_blocks=[2, 2],
        stage2_num_channels=[16, 32],
        stage3_num_modules=1,
        stage3_num_blocks=[2, 2, 2],
        stage3_num_channels=[16, 32, 64],
        stage4_num_modules=1,
        stage4_num_blocks=[2, 2, 2, 2],
        stage4_num_channels=[16, 32, 64, 128],
706
        **kwargs)
C
chenguowei01 已提交
707 708 709
    return model


710 711
@manager.BACKBONES.add_component
def HRNet_W18_Small_V2(**kwargs):
C
chenguowei01 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724
    model = HRNet(
        stage1_num_modules=1,
        stage1_num_blocks=[2],
        stage1_num_channels=[64],
        stage2_num_modules=1,
        stage2_num_blocks=[2, 2],
        stage2_num_channels=[18, 36],
        stage3_num_modules=1,
        stage3_num_blocks=[2, 2, 2],
        stage3_num_channels=[18, 36, 72],
        stage4_num_modules=1,
        stage4_num_blocks=[2, 2, 2, 2],
        stage4_num_channels=[18, 36, 72, 144],
725
        **kwargs)
C
chenguowei01 已提交
726 727 728
    return model


729 730
@manager.BACKBONES.add_component
def HRNet_W18(**kwargs):
C
chenguowei01 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743
    model = HRNet(
        stage1_num_modules=1,
        stage1_num_blocks=[4],
        stage1_num_channels=[64],
        stage2_num_modules=1,
        stage2_num_blocks=[4, 4],
        stage2_num_channels=[18, 36],
        stage3_num_modules=4,
        stage3_num_blocks=[4, 4, 4],
        stage3_num_channels=[18, 36, 72],
        stage4_num_modules=3,
        stage4_num_blocks=[4, 4, 4, 4],
        stage4_num_channels=[18, 36, 72, 144],
744
        **kwargs)
C
chenguowei01 已提交
745 746 747
    return model


748 749
@manager.BACKBONES.add_component
def HRNet_W30(**kwargs):
C
chenguowei01 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762
    model = HRNet(
        stage1_num_modules=1,
        stage1_num_blocks=[4],
        stage1_num_channels=[64],
        stage2_num_modules=1,
        stage2_num_blocks=[4, 4],
        stage2_num_channels=[30, 60],
        stage3_num_modules=4,
        stage3_num_blocks=[4, 4, 4],
        stage3_num_channels=[30, 60, 120],
        stage4_num_modules=3,
        stage4_num_blocks=[4, 4, 4, 4],
        stage4_num_channels=[30, 60, 120, 240],
763
        **kwargs)
C
chenguowei01 已提交
764 765 766
    return model


767 768
@manager.BACKBONES.add_component
def HRNet_W32(**kwargs):
C
chenguowei01 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781
    model = HRNet(
        stage1_num_modules=1,
        stage1_num_blocks=[4],
        stage1_num_channels=[64],
        stage2_num_modules=1,
        stage2_num_blocks=[4, 4],
        stage2_num_channels=[32, 64],
        stage3_num_modules=4,
        stage3_num_blocks=[4, 4, 4],
        stage3_num_channels=[32, 64, 128],
        stage4_num_modules=3,
        stage4_num_blocks=[4, 4, 4, 4],
        stage4_num_channels=[32, 64, 128, 256],
782
        **kwargs)
C
chenguowei01 已提交
783 784 785
    return model


786 787
@manager.BACKBONES.add_component
def HRNet_W40(**kwargs):
C
chenguowei01 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800
    model = HRNet(
        stage1_num_modules=1,
        stage1_num_blocks=[4],
        stage1_num_channels=[64],
        stage2_num_modules=1,
        stage2_num_blocks=[4, 4],
        stage2_num_channels=[40, 80],
        stage3_num_modules=4,
        stage3_num_blocks=[4, 4, 4],
        stage3_num_channels=[40, 80, 160],
        stage4_num_modules=3,
        stage4_num_blocks=[4, 4, 4, 4],
        stage4_num_channels=[40, 80, 160, 320],
801
        **kwargs)
C
chenguowei01 已提交
802 803 804
    return model


805 806
@manager.BACKBONES.add_component
def HRNet_W44(**kwargs):
C
chenguowei01 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819
    model = HRNet(
        stage1_num_modules=1,
        stage1_num_blocks=[4],
        stage1_num_channels=[64],
        stage2_num_modules=1,
        stage2_num_blocks=[4, 4],
        stage2_num_channels=[44, 88],
        stage3_num_modules=4,
        stage3_num_blocks=[4, 4, 4],
        stage3_num_channels=[44, 88, 176],
        stage4_num_modules=3,
        stage4_num_blocks=[4, 4, 4, 4],
        stage4_num_channels=[44, 88, 176, 352],
820
        **kwargs)
C
chenguowei01 已提交
821 822 823
    return model


824 825
@manager.BACKBONES.add_component
def HRNet_W48(**kwargs):
C
chenguowei01 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838
    model = HRNet(
        stage1_num_modules=1,
        stage1_num_blocks=[4],
        stage1_num_channels=[64],
        stage2_num_modules=1,
        stage2_num_blocks=[4, 4],
        stage2_num_channels=[48, 96],
        stage3_num_modules=4,
        stage3_num_blocks=[4, 4, 4],
        stage3_num_channels=[48, 96, 192],
        stage4_num_modules=3,
        stage4_num_blocks=[4, 4, 4, 4],
        stage4_num_channels=[48, 96, 192, 384],
839
        **kwargs)
C
chenguowei01 已提交
840 841 842
    return model


843 844
@manager.BACKBONES.add_component
def HRNet_W60(**kwargs):
C
chenguowei01 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857
    model = HRNet(
        stage1_num_modules=1,
        stage1_num_blocks=[4],
        stage1_num_channels=[64],
        stage2_num_modules=1,
        stage2_num_blocks=[4, 4],
        stage2_num_channels=[60, 120],
        stage3_num_modules=4,
        stage3_num_blocks=[4, 4, 4],
        stage3_num_channels=[60, 120, 240],
        stage4_num_modules=3,
        stage4_num_blocks=[4, 4, 4, 4],
        stage4_num_channels=[60, 120, 240, 480],
858
        **kwargs)
C
chenguowei01 已提交
859 860 861
    return model


862 863
@manager.BACKBONES.add_component
def HRNet_W64(**kwargs):
C
chenguowei01 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876
    model = HRNet(
        stage1_num_modules=1,
        stage1_num_blocks=[4],
        stage1_num_channels=[64],
        stage2_num_modules=1,
        stage2_num_blocks=[4, 4],
        stage2_num_channels=[64, 128],
        stage3_num_modules=4,
        stage3_num_blocks=[4, 4, 4],
        stage3_num_channels=[64, 128, 256],
        stage4_num_modules=3,
        stage4_num_blocks=[4, 4, 4, 4],
        stage4_num_channels=[64, 128, 256, 512],
877
        **kwargs)
C
chenguowei01 已提交
878
    return model