train.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import paddle
C
chenguowei01 已提交
18
from paddle.distributed import ParallelEnv
C
chenguowei01 已提交
19
from paddle.distributed import init_parallel_env
20
from paddle.io import DistributedBatchSampler
C
chenguowei01 已提交
21
from paddle.io import DataLoader
22 23
import paddle.nn.functional as F

M
michaelowenliu 已提交
24 25 26 27
import paddleseg.utils.logger as logger
from paddleseg.utils import load_pretrained_model
from paddleseg.utils import resume
from paddleseg.utils import Timer, calculate_eta
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
from .val import evaluate


def check_logits_losses(logits, losses):
    len_logits = len(logits)
    len_losses = len(losses['types'])
    if len_logits != len_losses:
        raise RuntimeError(
            'The length of logits should equal to the types of loss config: {} != {}.'
            .format(len_logits, len_losses))


def loss_computation(logits, label, losses):
    check_logits_losses(logits, losses)
    loss = 0
    for i in range(len(logits)):
        logit = logits[i]
        if logit.shape[-2:] != label.shape[-2:]:
            logit = F.resize_bilinear(logit, label.shape[-2:])
        loss_i = losses['types'][i](logit, label)
        loss += losses['coef'][i] * loss_i
    return loss


def train(model,
          train_dataset,
          places=None,
          eval_dataset=None,
          optimizer=None,
          save_dir='output',
          iters=10000,
          batch_size=2,
          resume_model=None,
          save_interval_iters=1000,
          log_iters=10,
          num_classes=None,
          num_workers=8,
          use_vdl=False,
          losses=None,
          ignore_index=255):

    nranks = ParallelEnv().nranks

    start_iter = 0
    if resume_model is not None:
        start_iter = resume(model, optimizer, resume_model)

    if not os.path.isdir(save_dir):
        if os.path.exists(save_dir):
            os.remove(save_dir)
        os.makedirs(save_dir)

    if nranks > 1:
C
chenguowei01 已提交
81 82
        # Initialize parallel training environment.
        init_parallel_env()
C
chenguowei01 已提交
83 84
        strategy = paddle.distributed.prepare_context()
        ddp_model = paddle.DataParallel(model, strategy)
85 86 87

    batch_sampler = DistributedBatchSampler(
        train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
C
chenguowei01 已提交
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    loader = DataLoader(
        train_dataset,
        batch_sampler=batch_sampler,
        places=places,
        num_workers=num_workers,
        return_list=True,
    )

    if use_vdl:
        from visualdl import LogWriter
        log_writer = LogWriter(save_dir)

    timer = Timer()
    avg_loss = 0.0
    iters_per_epoch = len(batch_sampler)
    best_mean_iou = -1.0
    best_model_iter = -1
    train_reader_cost = 0.0
    train_batch_cost = 0.0
    timer.start()

    iter = start_iter
    while iter < iters:
        for data in loader:
            iter += 1
            if iter > iters:
                break
            train_reader_cost += timer.elapsed_time()
            images = data[0]
            labels = data[1].astype('int64')
            if nranks > 1:
                logits = ddp_model(images)
                loss = loss_computation(logits, labels, losses)
                # apply_collective_grads sum grads over multiple gpus.
                loss = ddp_model.scale_loss(loss)
                loss.backward()
                ddp_model.apply_collective_grads()
            else:
                logits = model(images)
                loss = loss_computation(logits, labels, losses)
                # loss = model(images, labels)
                loss.backward()
C
chenguowei01 已提交
131 132 133 134 135
            # optimizer.minimize(loss)
            optimizer.step()
            if isinstance(optimizer._learning_rate,
                          paddle.optimizer._LRScheduler):
                optimizer._learning_rate.step()
136
            model.clear_gradients()
C
chenguowei01 已提交
137 138 139
            # Sum loss over all ranks
            if nranks > 1:
                paddle.distributed.all_reduce(loss)
140
            avg_loss += loss.numpy()[0]
C
chenguowei01 已提交
141
            lr = optimizer.get_lr()
142 143 144 145 146 147 148 149 150 151 152 153
            train_batch_cost += timer.elapsed_time()
            if (iter) % log_iters == 0 and ParallelEnv().local_rank == 0:
                avg_loss /= log_iters
                avg_train_reader_cost = train_reader_cost / log_iters
                avg_train_batch_cost = train_batch_cost / log_iters
                train_reader_cost = 0.0
                train_batch_cost = 0.0
                remain_iters = iters - iter
                eta = calculate_eta(remain_iters, avg_train_batch_cost)
                logger.info(
                    "[TRAIN] epoch={}, iter={}/{}, loss={:.4f}, lr={:.6f}, batch_cost={:.4f}, reader_cost={:.4f} | ETA {}"
                    .format((iter - 1) // iters_per_epoch + 1, iter, iters,
C
chenguowei01 已提交
154
                            avg_loss, lr, avg_train_batch_cost,
155 156
                            avg_train_reader_cost, eta))
                if use_vdl:
C
chenguowei01 已提交
157
                    log_writer.add_scalar('Train/loss', avg_loss, iter)
158 159 160 161 162 163 164 165 166 167 168 169 170
                    log_writer.add_scalar('Train/lr', lr, iter)
                    log_writer.add_scalar('Train/batch_cost',
                                          avg_train_batch_cost, iter)
                    log_writer.add_scalar('Train/reader_cost',
                                          avg_train_reader_cost, iter)
                avg_loss = 0.0

            if (iter % save_interval_iters == 0
                    or iter == iters) and ParallelEnv().local_rank == 0:
                current_save_dir = os.path.join(save_dir,
                                                "iter_{}".format(iter))
                if not os.path.isdir(current_save_dir):
                    os.makedirs(current_save_dir)
C
chenguowei01 已提交
171 172 173 174
                paddle.save(model.state_dict(),
                            os.path.join(current_save_dir, 'model'))
                paddle.save(optimizer.state_dict(),
                            os.path.join(current_save_dir, 'model'))
175 176 177 178 179 180 181 182 183 184 185 186 187

                if eval_dataset is not None:
                    mean_iou, avg_acc = evaluate(
                        model,
                        eval_dataset,
                        model_dir=current_save_dir,
                        num_classes=num_classes,
                        ignore_index=ignore_index,
                        iter_id=iter)
                    if mean_iou > best_mean_iou:
                        best_mean_iou = mean_iou
                        best_model_iter = iter
                        best_model_dir = os.path.join(save_dir, "best_model")
C
chenguowei01 已提交
188 189
                        paddle.save(model.state_dict(),
                                    os.path.join(best_model_dir, 'model'))
190 191 192 193 194 195 196 197 198 199 200
                    logger.info(
                        'Current evaluated best model in eval_dataset is iter_{}, miou={:4f}'
                        .format(best_model_iter, best_mean_iou))

                    if use_vdl:
                        log_writer.add_scalar('Evaluate/mIoU', mean_iou, iter)
                        log_writer.add_scalar('Evaluate/aAcc', avg_acc, iter)
                    model.train()
            timer.restart()
    if use_vdl:
        log_writer.close()