train.py 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import paddle
C
chenguowei01 已提交
18
from paddle.distributed import ParallelEnv
19
from paddle.io import DistributedBatchSampler
C
chenguowei01 已提交
20
from paddle.io import DataLoader
21 22
import paddle.nn.functional as F

M
michaelowenliu 已提交
23 24 25 26
import paddleseg.utils.logger as logger
from paddleseg.utils import load_pretrained_model
from paddleseg.utils import resume
from paddleseg.utils import Timer, calculate_eta
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
from .val import evaluate


def check_logits_losses(logits, losses):
    len_logits = len(logits)
    len_losses = len(losses['types'])
    if len_logits != len_losses:
        raise RuntimeError(
            'The length of logits should equal to the types of loss config: {} != {}.'
            .format(len_logits, len_losses))


def loss_computation(logits, label, losses):
    check_logits_losses(logits, losses)
    loss = 0
    for i in range(len(logits)):
        logit = logits[i]
        if logit.shape[-2:] != label.shape[-2:]:
            logit = F.resize_bilinear(logit, label.shape[-2:])
        loss_i = losses['types'][i](logit, label)
        loss += losses['coef'][i] * loss_i
    return loss


def train(model,
          train_dataset,
          places=None,
          eval_dataset=None,
          optimizer=None,
          save_dir='output',
          iters=10000,
          batch_size=2,
          resume_model=None,
          save_interval_iters=1000,
          log_iters=10,
          num_classes=None,
          num_workers=8,
          use_vdl=False,
          losses=None,
          ignore_index=255):

    nranks = ParallelEnv().nranks

    start_iter = 0
    if resume_model is not None:
        start_iter = resume(model, optimizer, resume_model)

    if not os.path.isdir(save_dir):
        if os.path.exists(save_dir):
            os.remove(save_dir)
        os.makedirs(save_dir)

    if nranks > 1:
C
chenguowei01 已提交
80 81
        strategy = paddle.distributed.prepare_context()
        ddp_model = paddle.DataParallel(model, strategy)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    batch_sampler = DistributedBatchSampler(
        train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
    loader = DataLoader(
        train_dataset,
        batch_sampler=batch_sampler,
        places=places,
        num_workers=num_workers,
        return_list=True,
    )

    if use_vdl:
        from visualdl import LogWriter
        log_writer = LogWriter(save_dir)

    timer = Timer()
    avg_loss = 0.0
    iters_per_epoch = len(batch_sampler)
    best_mean_iou = -1.0
    best_model_iter = -1
    train_reader_cost = 0.0
    train_batch_cost = 0.0
    timer.start()

    iter = start_iter
    while iter < iters:
        for data in loader:
            iter += 1
            if iter > iters:
                break
            train_reader_cost += timer.elapsed_time()
            images = data[0]
            labels = data[1].astype('int64')
            if nranks > 1:
                logits = ddp_model(images)
                loss = loss_computation(logits, labels, losses)
                # loss = ddp_model(images, labels)
                # apply_collective_grads sum grads over multiple gpus.
                loss = ddp_model.scale_loss(loss)
                loss.backward()
                ddp_model.apply_collective_grads()
            else:
                logits = model(images)
                loss = loss_computation(logits, labels, losses)
                # loss = model(images, labels)
                loss.backward()
            optimizer.minimize(loss)
            model.clear_gradients()
            avg_loss += loss.numpy()[0]
C
chenguowei01 已提交
131
            lr = optimizer.get_lr()
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
            train_batch_cost += timer.elapsed_time()
            if (iter) % log_iters == 0 and ParallelEnv().local_rank == 0:
                avg_loss /= log_iters
                avg_train_reader_cost = train_reader_cost / log_iters
                avg_train_batch_cost = train_batch_cost / log_iters
                train_reader_cost = 0.0
                train_batch_cost = 0.0
                remain_iters = iters - iter
                eta = calculate_eta(remain_iters, avg_train_batch_cost)
                logger.info(
                    "[TRAIN] epoch={}, iter={}/{}, loss={:.4f}, lr={:.6f}, batch_cost={:.4f}, reader_cost={:.4f} | ETA {}"
                    .format((iter - 1) // iters_per_epoch + 1, iter, iters,
                            avg_loss * nranks, lr, avg_train_batch_cost,
                            avg_train_reader_cost, eta))
                if use_vdl:
                    log_writer.add_scalar('Train/loss', avg_loss * nranks, iter)
                    log_writer.add_scalar('Train/lr', lr, iter)
                    log_writer.add_scalar('Train/batch_cost',
                                          avg_train_batch_cost, iter)
                    log_writer.add_scalar('Train/reader_cost',
                                          avg_train_reader_cost, iter)
                avg_loss = 0.0

            if (iter % save_interval_iters == 0
                    or iter == iters) and ParallelEnv().local_rank == 0:
                current_save_dir = os.path.join(save_dir,
                                                "iter_{}".format(iter))
                if not os.path.isdir(current_save_dir):
                    os.makedirs(current_save_dir)
C
chenguowei01 已提交
161 162 163 164
                paddle.save(model.state_dict(),
                            os.path.join(current_save_dir, 'model'))
                paddle.save(optimizer.state_dict(),
                            os.path.join(current_save_dir, 'model'))
165 166 167 168 169 170 171 172 173 174 175 176 177

                if eval_dataset is not None:
                    mean_iou, avg_acc = evaluate(
                        model,
                        eval_dataset,
                        model_dir=current_save_dir,
                        num_classes=num_classes,
                        ignore_index=ignore_index,
                        iter_id=iter)
                    if mean_iou > best_mean_iou:
                        best_mean_iou = mean_iou
                        best_model_iter = iter
                        best_model_dir = os.path.join(save_dir, "best_model")
C
chenguowei01 已提交
178 179
                        paddle.save(model.state_dict(),
                                    os.path.join(best_model_dir, 'model'))
180 181 182 183 184 185 186 187 188 189 190
                    logger.info(
                        'Current evaluated best model in eval_dataset is iter_{}, miou={:4f}'
                        .format(best_model_iter, best_mean_iou))

                    if use_vdl:
                        log_writer.add_scalar('Evaluate/mIoU', mean_iou, iter)
                        log_writer.add_scalar('Evaluate/aAcc', avg_acc, iter)
                    model.train()
            timer.restart()
    if use_vdl:
        log_writer.close()